查看完整版本: [-- 锚固工程设计计算与施工.pdf --]

-> 基坑工程图书室 -> 锚固工程设计计算与施工.pdf [打印本页] 登录 -> 注册 -> 回复主题 -> 发表主题

wntlgcxx 2007-09-29 17:48

锚固工程设计计算与施工.pdf

锚固工程设计计算与施工.pdf

土老帽 2007-09-29 20:02
学习一下,谢过了!

ii1166 2007-09-30 12:24
谢谢楼主  顶一下

wg7551 2007-10-01 10:14
[s:67]  [s:67]  [s:67]  [s:67]

jlzhang 2007-10-13 22:16
顶。。。。。。。。。。。

wcm_w 2007-11-10 00:35
感谢楼主,是好东东

兰猫淘气 2007-11-11 21:19
好资料,谢谢了

haiqing1300 2007-12-04 19:09
谢谢楼主提供

yufei113 2008-01-21 16:35
收起来,小弟刚开始关注基坑,多下点看看,感谢楼主!

zlwei518 2008-04-05 17:52
我是外专业的想学习基坑稳定性有关计算,请高手指点,先下了,谢谢楼主!!!!1

geofeng 2008-04-05 19:05
是彭振斌编的那本吧?比较早了。

xiangxin0308 2008-05-29 13:16
我找你找得好辛苦啊 [s:50]
现在好了,谢谢楼主!!!!!!!!!!!!

mjfdch 2008-06-04 20:21
路过学习~~

0406076101 2008-06-20 00:01
深基坑支护设计浅探——某综合楼工程为实例
作者:温茨华
阅读:2248 次
上传时间:2005-01-24
推荐人:iiwq (已传论文 49 套)
简介: 深基坑支护的设计、施工、监测技术是近10多年来在我国逐渐涉及的技术难题。深基坑的护 壁,不仅要求保证基坑内正常作业安全,而且要防止基坑及坑外土体移动,保证基坑附近建 筑物、道路、管线的正常运行。各地通过工程实践与科研,在基坑支护理论与技术上都有了 进一步的发展,取得了可喜的成绩。
关键字:基坑 地基基础

  1.深基坑支护类型选择
  深基坑支护不仅要求确保边坡的稳定,而且要满足变形控制要求,以确保基坑周围的建筑物 、地下管线、道路等的安全。如今支护结构日臻完善,出现了许多新的支护结构形式与稳定边坡的方法。
  根据本地区实际情况,经比较采用钻孔灌注桩作为挡土结构,由于基坑开采区主要为粘性土 ,它具有一定自稳定结构的特性,因此护坡桩采用间隔式钢筋混凝土钻孔灌注桩挡土,土层锚杆支护的方案,挡土支护结构布置如下:(1)护坡桩桩径600mm,桩净距1000mm;(2)土层 锚杆一排作单支撑,端部在地面以下2.00mm,下倾18°,间距1.6m;(3)腰梁一道,位于坡顶下2.00m处,通过腰梁,锚杆对护坡桩进行拉结;(4)桩间为粘性土不作处理。
  2.深基坑支护土压力
  深基坑支护是近些年来才发展起来的工程运用学科,新的完善的支护结构上的土压力理论还 没有正式提出,要精确地加以确定是不可能的。而且由于土的土质比较复杂,土压力的计算还与支护结构的刚度和施工方法等有关,要精确地确定也是比较困难的。目前,土压力的计 算,仍然是简化后按库仑公式或朗肯公式进行。常用的公式为:
主动土压力:
Eα=1/2γH2tg2(45°-Φ/2)-2CHtg(45°-Φ/2)+2C2/γ
工中:Eα——主动土压力(KN),γ——土的容重,采用加权平均值。H——挡土桩长(m) 。Φ——土的内摩擦角(°)。C——土的内聚力(KN)。
被动土压力:EP=1/2γt2KPCt
式中:EP——被动土压力(KN),t——挡土桩的入土深度(m),KP——被动土压力系数,一般取K2=tg2(45°-Φ/2)。
  由于传统理论存在达些不足,在工程运用时就必须作经验修正,以便在一定程度上能够满足 工程上的使用要求,这也就是从以下几个方面具体考虑:
  2.1.土压力参数:尤其抗剪强度C/Φ的取值问题。抗剪强度指标的测定方法有总应力法和有 效应办法,前者采用总应力C、Φ值和天然重度γ(或饱和容量)计算土压力,并认为水压力包括在内,后者采用有效应力C、Φ及浮容量γ计算土压力,另解水压力,即是水土分算。 总应办法应用方便,适用于不透水或弱透水的粘土层。有效应力法应用于砂层。
  2.2.朗肯理论假定墙背与填土之间无摩擦力。这种假设造成计算主动土压力偏大,而被动土 压力偏小。主动土压力偏大则是偏安全的,而被动土压力偏小则是偏危险的。针对这一情况,在计算被动土压力时,采用修正后的被动土压力系数KP,因为库仑理论计算被动土压力 偏大。因此采用库仑理论中的被动土压力系数擦角δ,克服了朗肯理论在此方面的假定。可以求得修正后的KP是:KP=〔CosΨDCosδ[KF)]-Sin(Ψo+ δ)SinΨo〕2
式中是按等值内摩擦角计算,对粘性土取ΦD=Φ是根据经验取值,δ一般为1/3Φ-2/3Φ 。
  2.3.用等值内摩擦角计算主动土压力。在实践中,对于抗深在10m内的支护计算,把有粘聚 力的主动土压力Eα,计算式为:E=1/2CHtg2(45°-Φ/2)+2C2/γ。
  用等值内摩擦角时,按无粘性土三角形土压力并入Φo,E=1/2γH2tg(45°-Φ/ 2),而E=E由此可得:tg(45°-[SX(]Φo2= rH2tg2(45°-Ψ/2)-4CHtg(45°-Ψ/2)+4C2/r2rH2
  2.4.深基坑开挖的空间效应。基坑的滑动面受到相邻边的制约影响,在中线的土压力最大, 而造近两边的压力则小,利用这种空间效应,可以在两边折减桩数或减少配筋量。
  2.5.重视场内外水的问题。注意降排水,因为土中含水量增加,抗剪强度降低,水分在较大 土粒表面形成润滑剂,使摩擦力降低,而较小颗粒结合水膜变厚,降低了土的内聚力。
  综上所述,结合本场地地质资料以及所选择的基抗支护形成,水压力和土压力分别按以下方 式计算:
  2.5.1.水压力:因支护桩所处地层主要为粘性土层,且为硬塑中密状态,另开挖前已作降水 处理,故认为此压力采用水土合算是可行的。
  2.5.2.土压力:桩后主动土压力,采用朗肯主动土压力计算,即:Eα=1/2γH2tg2(4 5°-Φ/2)-2CHtg(45°-Φ/2)+2C2/γ
桩前被动土压力,采用修正后的朗肯被动土压力计算,即:EP=1/2γt2KP+2KP Ct。
式中:KP=〔CosΨCosδ-Sin(Ψ+δ)SinΨ 〕2
  3.护坡桩的设计
  该工程支护结构主要采用钢筋混凝土钻孔灌注桩加斜土锚的设计方案,桩的直径为600mm, 桩间净距为1000mm。考虑基坑附近建筑屋的影响,还有环城南路上机车等动截荷的影响,支 护设计时,笔者参照部分支护结构设计的相关情形取地面均布载荷q=40KN/m。
  3.1.桩上侧土压力:①桩后侧主动土压力,因为桩后土为三层(杂添土、粘土、粉粘土)所以 计算时采用加权平均值的C、Φ、γ,Φ=21.32,得:Eα=4.7H2-2.76H+108.49;②桩前侧被动土压力:因为桩前侧土为两层(粘土层、粉质粘土层),所以计算时应采用加权平均 值的C′、Φ′、γ′,得:EP=33.89676t2+104.5t;③均布载荷对桩的侧压力:由公式Eq=qKaH,得:Eq=18.672H。
  3.2.桩插入深度确定:计算前须作如下假设:(1)锚固点A无移动;(2)灌注桩埋在地下无移动;(3)自由端因较浅不作固定端,按地下简支计算。
  3.2.1.建立方程:对铰点(锚固点)A求矩,则必须满足:ΣMA=0
所以有:1KEP(23t+h-a)=Eq〔23 (h+t)-a〕+Ep(h+t2-α)q
式中:K为安全系数,取2,得:8.31t3+82.97t2-138.75t=114.12
  3.2.2.插入深度及柱长计算:根据实际情况t取最小正解;t=1.99m。
  根据《建筑结构设计手册》及综合地质资料,取安全系数为1.2,所以桩的总长度为:L=h+1 .5t=8.5+1.2♀1.99=12.4(m)
  3.3.锚拉力的计算:由于桩长已求出,对整个桩而言,由于力平衡原理可以求出A点的锚拉 力,ΣFA=0,即:Eα+Eq=Ep+TA,取t=1.99解得:TA=194.35(KN)
  4.土层锚定设计
  锚固点埋深α=2m,锚杆水平间距1.6m,锚杆倾角18°,这是因为考虑到:(1)基坑附近有环城南路和建筑物的存在,倾角小,锚杆的握裹力易满足;(2)支护所在粘土层较厚,并且均 一,可作为锚定区;(3)粘土层的下履层(粉质粘土层、粉砂层、圆砾层)都是饱水且较薄。
  4.1.土层锚杆抗拔计算:土层锚杆锚固端所在的粘土层:c=47.7kpΨ=20.72°r=20 .13kN/m2
  4.1.1.土层锚杆锚非固端段长度的确定。
  由三角关系有:BF=sin(45°-Φ/2)/sin(45°-Φ/2+a)•(H-a-d)代入数据计算得:BF=5.06 m
  4.1.2.土层锚杆锚段长度的确定:该土层锚杆采用非高压灌浆,则主体抗压强度按下面公式 计算:r=C+(1/2)rhtgΨ。式中:r——埋深h处的抗剪强度,K——安全系数1.5,d——锚杆孔径,取0.12m,锚固段长度L=17.98m
  5.结论
  深基坑支护工程是近二十年来随着城市高层建筑发展而发展的一门新的实践工程学,它还有 待于理论上的完善,如何取一种在经济技术上都合理的支护类型就必须充分考虑现场环境、工程地质条件以及工程要求。
 
北京北护城河松林闸深基坑工程支护方案优化探讨(刘纪峰 张会芝 张永红)


http://www.hwcc.com.cn
2007年8月24日    《施工技术》2006年7月    编辑:宋金凤



[摘要] 北京市北护城河新建松林闸深基坑工程,受周边复杂环境限制,原设计放坡开挖方案难以实施,本文结合工程实际,提出了支护优化方案,并从各方面对原方案和优化方案进行了对比,结果表明优化方案的合理性。
[关键词] 深基坑; 支护方案; 优化
[中图分类号] TU746.5 [文献标识码] A     [文章编号] 1002-8498 (2006) 07-0036-03
北京市北护城河新建松林闸深基坑支护工程,原设计采用了理论上比较经济的放坡开挖方案,但是受周边复杂环境条件的制约,放坡开挖并非最合理的。本文结合现场实际情况,提出了更为合理的优化设计方案。
1  工程概况
北京市护城河与北二环路平行,西起西直门暗涵出口,东到东北城角,全长5 820m ,新建松林闸位于0 + 825~0 + 939 段,开挖深度6.0~9.1m ,结构外边线距北侧滨河路1.5~6.0m ,距南侧北二环路边的公交车站1.5~5.5m ,计划在公交车站出口处留7m 的施工道路。如图1 所示。

据地质勘察报告,松林闸区现地面高程47.80m ,地下水位29.25~29.45m。各土层厚度及其性状如表1 所示。

2  支护优化途径及方案选择
加上无支护或简单护面的放坡方案,目前国内常用的支护方案主要可归纳为5 类,按造价高低,其选择流程为:放坡→坑壁土体加固类→排桩板桩类→地下连续墙→沉井、沉箱类。各类主要形式及其适用深度如下: ①水泥土搅拌桩 适用于基坑深度小于10m 或地下室不超过2 层的基坑工程。②土钉墙(插筋补强)  适用于基坑深度小于10m 或地下室不超过2 层的基坑工程;当基坑深度大于10m 而小于14m 时,此种方法只适用于北方地区及西南土质较好的地区情况。③排桩板桩类(造孔桩、沉管桩、钢板桩等)  适用于基坑深度不超过14m 的各种情况;当基坑深度超过14m 或有4 层以上地下室或特种结构的基坑工程,此种方法只适用于北方地区及西南土质较好的地区情况。④地下连续墙 开槽灌注式施工方法适用于各种情况;SMW工法适用于沿海及南方软土地区情况。⑤沉井、沉箱类 适用于沿海及南方软土地区各种情况。
无支护或简单护面的放坡方案最为经济,如果场地空间允许且无深厚软土,应优先考虑。但是,本工程周边环境复杂,若采用大放坡开挖,北侧滨河路和南岸的公交车站都要挖断。且施工经验表明,基坑开挖深度> 5m时,考虑到放坡增加的土方开挖、外运和回填等项费用,放坡开挖并不比其它支护经济。
本基坑开挖深度在6.0~9.1m,根据前面分析,可采取的深基坑支护结构形式主要有土钉墙、排桩板桩或地下连续墙,悬臂桩和水泥搅拌桩支护方案一般只适用于开挖深度在6.0~7.0m 以下的深基坑工程,普通悬臂桩的嵌固深度,须达到悬臂高度的1~2 倍,由于悬臂桩承受的弯矩很大,其侧向位移也很大。因此,当采用悬臂桩支护形式时,应考虑到基坑周边环境对基坑位移的敏感程度。当悬臂桩支护方案不可行时,可采用喷锚支护与排桩联合应用,即基坑边坡上部采用喷锚支护,下部采用护坡桩(或加锚杆、内支撑) ,以降低基坑工程造价;或者直接采用桩+ 锚杆(内支撑)支护结构。当地下连续墙作为外墙时,采用地下连续墙方案也能起到节约资金的作用。
深基坑工程的优化设计主要从以下4个方面进行: ①技术的可靠性、先进性以及施工的可行性; ②经济效益; ③环境影响; ④工期。按其阶段不同,深基坑工程的优化设计可分为三级优化:系统优化、设计计算优化和反演分析优化(见图2) 。
结合现场实际情况,施工单位考虑了土钉墙+ 桩锚联合支护方式,使用理正4.03基坑支护软件计算,各支护方式参数如下。
2.1  土钉墙支护参数
该部分基坑开挖深度8.30m,坑边荷载取q = 10kNPm2 ,坡度δ= 63.4°,放坡比例1∶0.5 , 土钉间距Sx ×Sy = 1.5m ×1.4m,梅花形布置,孔径10cm,倾角10°。根据内部稳定性及土钉抗拉强度验算,结合施工经验进行局部调整,土钉护坡设计数据如表2 所示。布钉及结构剖面、节点作法如图3 、4 所示。



2.2  排桩+ 锚杆支护参数
基坑开挖深度9.10m,坑边荷载q =10kNPm2 。排桩:桩径1.1m,桩距1.7m,桩长15.40m, 桩顶标高47.80m,嵌固长度6.50m,配筋主筋15Ф22 钢筋, 箍筋<8 @200 ,加强筋Ф14 @2 000 ,桩身C25 混凝土;锚杆: 标高23.80m, 孔径15cm, 孔距1.7m, 长度16.0m,自由端长4.0m, 2根ф22 钢筋,锁定在2 根I22B 上,锁定预应力180kN;桩顶联系梁: 截面1 100mm ×600mm,C25 混凝土, 主筋16Ф16 钢筋,箍筋Ф6.5 @200 ; 桩间土: 挂Ф6.5 @250 ×250 钢筋网片,布设长2.0m、间距1.0m、1Ф18 土钉,用1Ф14 钢筋和护坡桩相连,表面喷射5cm 厚C20 碎石混凝土,限于篇幅,此处不再给出详图。
3  优化方案与原方案对比
下面从几个方面对优化方案与原方案对比: ①技术的可靠性、先进性 原方案可靠,无先进性;优化方案可靠,较先进。②施工的可行性 原方案施工无可行性;优化方案可行。③经济效益 原方案破坏道路及公交站且需拆迁31 棵树木和1 条过河污水管线,总费用逾700 万元;优化方案仅有7 棵树木需要迁移,初步概算费用487 万元,节省200 余万元。④环境影响 原方案需要开挖土方4 万m3 ,回填2 万m3 ,扬尘和噪声污染严重,挖断滨河路和公交车站,严重影响交通状况,树木迁移影响景观,管线破坏影响居民用水;优化方案采取人工挖孔桩,无扬尘和噪声污染等问题,较好地保护了环境。⑤工期 原方案需要同交通、电力、园林、市政等多部门交涉,工期无保证;优化方案工程进展顺利,工期有保证。⑥其它 原方案机械开挖无法及时探明未知地下管线,可能造成事故;优化方案人工挖孔,及时探明地下情况。
4  结语
针对本工程的周边环境条件,对比原设计采用的大放坡开挖方案,采用土钉墙+ 桩锚联合支护,技术上更可靠,施工更可行,节省资金,保护环境,保证了工期,实践证明,联合支护是本工程的优化方案。
参考文献:
[1]李纯,潘秀艳. 福建晋江某基坑支护方案设计[J ] . 施工技术,2005 ,34 (1) :21 - 22.
[2]徐杨青. 深基坑工程设计的优化原理与途径[J ] . 岩石力学与工程学报,2001 ,20(2) :248 - 251.
[作者简介] 刘纪峰(1979 —) ,男,河南沈丘人,中国矿业大学(北京) 博士研究生,北京中国矿大力建博0522 班。
来源:《施工技术》2006年7月

0406076101 2008-06-20 00:01
深基坑支护设计浅探——某综合楼工程为实例
作者:温茨华
阅读:2248 次
上传时间:2005-01-24
推荐人:iiwq (已传论文 49 套)
简介: 深基坑支护的设计、施工、监测技术是近10多年来在我国逐渐涉及的技术难题。深基坑的护 壁,不仅要求保证基坑内正常作业安全,而且要防止基坑及坑外土体移动,保证基坑附近建 筑物、道路、管线的正常运行。各地通过工程实践与科研,在基坑支护理论与技术上都有了 进一步的发展,取得了可喜的成绩。
关键字:基坑 地基基础

  1.深基坑支护类型选择
  深基坑支护不仅要求确保边坡的稳定,而且要满足变形控制要求,以确保基坑周围的建筑物 、地下管线、道路等的安全。如今支护结构日臻完善,出现了许多新的支护结构形式与稳定边坡的方法。
  根据本地区实际情况,经比较采用钻孔灌注桩作为挡土结构,由于基坑开采区主要为粘性土 ,它具有一定自稳定结构的特性,因此护坡桩采用间隔式钢筋混凝土钻孔灌注桩挡土,土层锚杆支护的方案,挡土支护结构布置如下:(1)护坡桩桩径600mm,桩净距1000mm;(2)土层 锚杆一排作单支撑,端部在地面以下2.00mm,下倾18°,间距1.6m;(3)腰梁一道,位于坡顶下2.00m处,通过腰梁,锚杆对护坡桩进行拉结;(4)桩间为粘性土不作处理。
  2.深基坑支护土压力
  深基坑支护是近些年来才发展起来的工程运用学科,新的完善的支护结构上的土压力理论还 没有正式提出,要精确地加以确定是不可能的。而且由于土的土质比较复杂,土压力的计算还与支护结构的刚度和施工方法等有关,要精确地确定也是比较困难的。目前,土压力的计 算,仍然是简化后按库仑公式或朗肯公式进行。常用的公式为:
主动土压力:
Eα=1/2γH2tg2(45°-Φ/2)-2CHtg(45°-Φ/2)+2C2/γ
工中:Eα——主动土压力(KN),γ——土的容重,采用加权平均值。H——挡土桩长(m) 。Φ——土的内摩擦角(°)。C——土的内聚力(KN)。
被动土压力:EP=1/2γt2KPCt
式中:EP——被动土压力(KN),t——挡土桩的入土深度(m),KP——被动土压力系数,一般取K2=tg2(45°-Φ/2)。
  由于传统理论存在达些不足,在工程运用时就必须作经验修正,以便在一定程度上能够满足 工程上的使用要求,这也就是从以下几个方面具体考虑:
  2.1.土压力参数:尤其抗剪强度C/Φ的取值问题。抗剪强度指标的测定方法有总应力法和有 效应办法,前者采用总应力C、Φ值和天然重度γ(或饱和容量)计算土压力,并认为水压力包括在内,后者采用有效应力C、Φ及浮容量γ计算土压力,另解水压力,即是水土分算。 总应办法应用方便,适用于不透水或弱透水的粘土层。有效应力法应用于砂层。
  2.2.朗肯理论假定墙背与填土之间无摩擦力。这种假设造成计算主动土压力偏大,而被动土 压力偏小。主动土压力偏大则是偏安全的,而被动土压力偏小则是偏危险的。针对这一情况,在计算被动土压力时,采用修正后的被动土压力系数KP,因为库仑理论计算被动土压力 偏大。因此采用库仑理论中的被动土压力系数擦角δ,克服了朗肯理论在此方面的假定。可以求得修正后的KP是:KP=〔CosΨDCosδ[KF)]-Sin(Ψo+ δ)SinΨo〕2
式中是按等值内摩擦角计算,对粘性土取ΦD=Φ是根据经验取值,δ一般为1/3Φ-2/3Φ 。
  2.3.用等值内摩擦角计算主动土压力。在实践中,对于抗深在10m内的支护计算,把有粘聚 力的主动土压力Eα,计算式为:E=1/2CHtg2(45°-Φ/2)+2C2/γ。
  用等值内摩擦角时,按无粘性土三角形土压力并入Φo,E=1/2γH2tg(45°-Φ/ 2),而E=E由此可得:tg(45°-[SX(]Φo2= rH2tg2(45°-Ψ/2)-4CHtg(45°-Ψ/2)+4C2/r2rH2
  2.4.深基坑开挖的空间效应。基坑的滑动面受到相邻边的制约影响,在中线的土压力最大, 而造近两边的压力则小,利用这种空间效应,可以在两边折减桩数或减少配筋量。
  2.5.重视场内外水的问题。注意降排水,因为土中含水量增加,抗剪强度降低,水分在较大 土粒表面形成润滑剂,使摩擦力降低,而较小颗粒结合水膜变厚,降低了土的内聚力。
  综上所述,结合本场地地质资料以及所选择的基抗支护形成,水压力和土压力分别按以下方 式计算:
  2.5.1.水压力:因支护桩所处地层主要为粘性土层,且为硬塑中密状态,另开挖前已作降水 处理,故认为此压力采用水土合算是可行的。
  2.5.2.土压力:桩后主动土压力,采用朗肯主动土压力计算,即:Eα=1/2γH2tg2(4 5°-Φ/2)-2CHtg(45°-Φ/2)+2C2/γ
桩前被动土压力,采用修正后的朗肯被动土压力计算,即:EP=1/2γt2KP+2KP Ct。
式中:KP=〔CosΨCosδ-Sin(Ψ+δ)SinΨ 〕2
  3.护坡桩的设计
  该工程支护结构主要采用钢筋混凝土钻孔灌注桩加斜土锚的设计方案,桩的直径为600mm, 桩间净距为1000mm。考虑基坑附近建筑屋的影响,还有环城南路上机车等动截荷的影响,支 护设计时,笔者参照部分支护结构设计的相关情形取地面均布载荷q=40KN/m。
  3.1.桩上侧土压力:①桩后侧主动土压力,因为桩后土为三层(杂添土、粘土、粉粘土)所以 计算时采用加权平均值的C、Φ、γ,Φ=21.32,得:Eα=4.7H2-2.76H+108.49;②桩前侧被动土压力:因为桩前侧土为两层(粘土层、粉质粘土层),所以计算时应采用加权平均 值的C′、Φ′、γ′,得:EP=33.89676t2+104.5t;③均布载荷对桩的侧压力:由公式Eq=qKaH,得:Eq=18.672H。
  3.2.桩插入深度确定:计算前须作如下假设:(1)锚固点A无移动;(2)灌注桩埋在地下无移动;(3)自由端因较浅不作固定端,按地下简支计算。
  3.2.1.建立方程:对铰点(锚固点)A求矩,则必须满足:ΣMA=0
所以有:1KEP(23t+h-a)=Eq〔23 (h+t)-a〕+Ep(h+t2-α)q
式中:K为安全系数,取2,得:8.31t3+82.97t2-138.75t=114.12
  3.2.2.插入深度及柱长计算:根据实际情况t取最小正解;t=1.99m。
  根据《建筑结构设计手册》及综合地质资料,取安全系数为1.2,所以桩的总长度为:L=h+1 .5t=8.5+1.2♀1.99=12.4(m)
  3.3.锚拉力的计算:由于桩长已求出,对整个桩而言,由于力平衡原理可以求出A点的锚拉 力,ΣFA=0,即:Eα+Eq=Ep+TA,取t=1.99解得:TA=194.35(KN)
  4.土层锚定设计
  锚固点埋深α=2m,锚杆水平间距1.6m,锚杆倾角18°,这是因为考虑到:(1)基坑附近有环城南路和建筑物的存在,倾角小,锚杆的握裹力易满足;(2)支护所在粘土层较厚,并且均 一,可作为锚定区;(3)粘土层的下履层(粉质粘土层、粉砂层、圆砾层)都是饱水且较薄。
  4.1.土层锚杆抗拔计算:土层锚杆锚固端所在的粘土层:c=47.7kpΨ=20.72°r=20 .13kN/m2
  4.1.1.土层锚杆锚非固端段长度的确定。
  由三角关系有:BF=sin(45°-Φ/2)/sin(45°-Φ/2+a)•(H-a-d)代入数据计算得:BF=5.06 m
  4.1.2.土层锚杆锚段长度的确定:该土层锚杆采用非高压灌浆,则主体抗压强度按下面公式 计算:r=C+(1/2)rhtgΨ。式中:r——埋深h处的抗剪强度,K——安全系数1.5,d——锚杆孔径,取0.12m,锚固段长度L=17.98m
  5.结论
  深基坑支护工程是近二十年来随着城市高层建筑发展而发展的一门新的实践工程学,它还有 待于理论上的完善,如何取一种在经济技术上都合理的支护类型就必须充分考虑现场环境、工程地质条件以及工程要求。
 
北京北护城河松林闸深基坑工程支护方案优化探讨(刘纪峰 张会芝 张永红)


http://www.hwcc.com.cn
2007年8月24日    《施工技术》2006年7月    编辑:宋金凤



[摘要] 北京市北护城河新建松林闸深基坑工程,受周边复杂环境限制,原设计放坡开挖方案难以实施,本文结合工程实际,提出了支护优化方案,并从各方面对原方案和优化方案进行了对比,结果表明优化方案的合理性。
[关键词] 深基坑; 支护方案; 优化
[中图分类号] TU746.5 [文献标识码] A     [文章编号] 1002-8498 (2006) 07-0036-03
北京市北护城河新建松林闸深基坑支护工程,原设计采用了理论上比较经济的放坡开挖方案,但是受周边复杂环境条件的制约,放坡开挖并非最合理的。本文结合现场实际情况,提出了更为合理的优化设计方案。
1  工程概况
北京市护城河与北二环路平行,西起西直门暗涵出口,东到东北城角,全长5 820m ,新建松林闸位于0 + 825~0 + 939 段,开挖深度6.0~9.1m ,结构外边线距北侧滨河路1.5~6.0m ,距南侧北二环路边的公交车站1.5~5.5m ,计划在公交车站出口处留7m 的施工道路。如图1 所示。

据地质勘察报告,松林闸区现地面高程47.80m ,地下水位29.25~29.45m。各土层厚度及其性状如表1 所示。

2  支护优化途径及方案选择
加上无支护或简单护面的放坡方案,目前国内常用的支护方案主要可归纳为5 类,按造价高低,其选择流程为:放坡→坑壁土体加固类→排桩板桩类→地下连续墙→沉井、沉箱类。各类主要形式及其适用深度如下: ①水泥土搅拌桩 适用于基坑深度小于10m 或地下室不超过2 层的基坑工程。②土钉墙(插筋补强)  适用于基坑深度小于10m 或地下室不超过2 层的基坑工程;当基坑深度大于10m 而小于14m 时,此种方法只适用于北方地区及西南土质较好的地区情况。③排桩板桩类(造孔桩、沉管桩、钢板桩等)  适用于基坑深度不超过14m 的各种情况;当基坑深度超过14m 或有4 层以上地下室或特种结构的基坑工程,此种方法只适用于北方地区及西南土质较好的地区情况。④地下连续墙 开槽灌注式施工方法适用于各种情况;SMW工法适用于沿海及南方软土地区情况。⑤沉井、沉箱类 适用于沿海及南方软土地区各种情况。
无支护或简单护面的放坡方案最为经济,如果场地空间允许且无深厚软土,应优先考虑。但是,本工程周边环境复杂,若采用大放坡开挖,北侧滨河路和南岸的公交车站都要挖断。且施工经验表明,基坑开挖深度> 5m时,考虑到放坡增加的土方开挖、外运和回填等项费用,放坡开挖并不比其它支护经济。
本基坑开挖深度在6.0~9.1m,根据前面分析,可采取的深基坑支护结构形式主要有土钉墙、排桩板桩或地下连续墙,悬臂桩和水泥搅拌桩支护方案一般只适用于开挖深度在6.0~7.0m 以下的深基坑工程,普通悬臂桩的嵌固深度,须达到悬臂高度的1~2 倍,由于悬臂桩承受的弯矩很大,其侧向位移也很大。因此,当采用悬臂桩支护形式时,应考虑到基坑周边环境对基坑位移的敏感程度。当悬臂桩支护方案不可行时,可采用喷锚支护与排桩联合应用,即基坑边坡上部采用喷锚支护,下部采用护坡桩(或加锚杆、内支撑) ,以降低基坑工程造价;或者直接采用桩+ 锚杆(内支撑)支护结构。当地下连续墙作为外墙时,采用地下连续墙方案也能起到节约资金的作用。
深基坑工程的优化设计主要从以下4个方面进行: ①技术的可靠性、先进性以及施工的可行性; ②经济效益; ③环境影响; ④工期。按其阶段不同,深基坑工程的优化设计可分为三级优化:系统优化、设计计算优化和反演分析优化(见图2) 。
结合现场实际情况,施工单位考虑了土钉墙+ 桩锚联合支护方式,使用理正4.03基坑支护软件计算,各支护方式参数如下。
2.1  土钉墙支护参数
该部分基坑开挖深度8.30m,坑边荷载取q = 10kNPm2 ,坡度δ= 63.4°,放坡比例1∶0.5 , 土钉间距Sx ×Sy = 1.5m ×1.4m,梅花形布置,孔径10cm,倾角10°。根据内部稳定性及土钉抗拉强度验算,结合施工经验进行局部调整,土钉护坡设计数据如表2 所示。布钉及结构剖面、节点作法如图3 、4 所示。



2.2  排桩+ 锚杆支护参数
基坑开挖深度9.10m,坑边荷载q =10kNPm2 。排桩:桩径1.1m,桩距1.7m,桩长15.40m, 桩顶标高47.80m,嵌固长度6.50m,配筋主筋15Ф22 钢筋, 箍筋<8 @200 ,加强筋Ф14 @2 000 ,桩身C25 混凝土;锚杆: 标高23.80m, 孔径15cm, 孔距1.7m, 长度16.0m,自由端长4.0m, 2根ф22 钢筋,锁定在2 根I22B 上,锁定预应力180kN;桩顶联系梁: 截面1 100mm ×600mm,C25 混凝土, 主筋16Ф16 钢筋,箍筋Ф6.5 @200 ; 桩间土: 挂Ф6.5 @250 ×250 钢筋网片,布设长2.0m、间距1.0m、1Ф18 土钉,用1Ф14 钢筋和护坡桩相连,表面喷射5cm 厚C20 碎石混凝土,限于篇幅,此处不再给出详图。
3  优化方案与原方案对比
下面从几个方面对优化方案与原方案对比: ①技术的可靠性、先进性 原方案可靠,无先进性;优化方案可靠,较先进。②施工的可行性 原方案施工无可行性;优化方案可行。③经济效益 原方案破坏道路及公交站且需拆迁31 棵树木和1 条过河污水管线,总费用逾700 万元;优化方案仅有7 棵树木需要迁移,初步概算费用487 万元,节省200 余万元。④环境影响 原方案需要开挖土方4 万m3 ,回填2 万m3 ,扬尘和噪声污染严重,挖断滨河路和公交车站,严重影响交通状况,树木迁移影响景观,管线破坏影响居民用水;优化方案采取人工挖孔桩,无扬尘和噪声污染等问题,较好地保护了环境。⑤工期 原方案需要同交通、电力、园林、市政等多部门交涉,工期无保证;优化方案工程进展顺利,工期有保证。⑥其它 原方案机械开挖无法及时探明未知地下管线,可能造成事故;优化方案人工挖孔,及时探明地下情况。
4  结语
针对本工程的周边环境条件,对比原设计采用的大放坡开挖方案,采用土钉墙+ 桩锚联合支护,技术上更可靠,施工更可行,节省资金,保护环境,保证了工期,实践证明,联合支护是本工程的优化方案。
参考文献:
[1]李纯,潘秀艳. 福建晋江某基坑支护方案设计[J ] . 施工技术,2005 ,34 (1) :21 - 22.
[2]徐杨青. 深基坑工程设计的优化原理与途径[J ] . 岩石力学与工程学报,2001 ,20(2) :248 - 251.
[作者简介] 刘纪峰(1979 —) ,男,河南沈丘人,中国矿业大学(北京) 博士研究生,北京中国矿大力建博0522 班。
来源:《施工技术》2006年7月

0406076101 2008-06-20 00:02
深基坑支护设计浅探——某综合楼工程为实例
作者:温茨华
阅读:2248 次
上传时间:2005-01-24
推荐人:iiwq (已传论文 49 套)
简介: 深基坑支护的设计、施工、监测技术是近10多年来在我国逐渐涉及的技术难题。深基坑的护 壁,不仅要求保证基坑内正常作业安全,而且要防止基坑及坑外土体移动,保证基坑附近建 筑物、道路、管线的正常运行。各地通过工程实践与科研,在基坑支护理论与技术上都有了 进一步的发展,取得了可喜的成绩。
关键字:基坑 地基基础

  1.深基坑支护类型选择
  深基坑支护不仅要求确保边坡的稳定,而且要满足变形控制要求,以确保基坑周围的建筑物 、地下管线、道路等的安全。如今支护结构日臻完善,出现了许多新的支护结构形式与稳定边坡的方法。
  根据本地区实际情况,经比较采用钻孔灌注桩作为挡土结构,由于基坑开采区主要为粘性土 ,它具有一定自稳定结构的特性,因此护坡桩采用间隔式钢筋混凝土钻孔灌注桩挡土,土层锚杆支护的方案,挡土支护结构布置如下:(1)护坡桩桩径600mm,桩净距1000mm;(2)土层 锚杆一排作单支撑,端部在地面以下2.00mm,下倾18°,间距1.6m;(3)腰梁一道,位于坡顶下2.00m处,通过腰梁,锚杆对护坡桩进行拉结;(4)桩间为粘性土不作处理。
  2.深基坑支护土压力
  深基坑支护是近些年来才发展起来的工程运用学科,新的完善的支护结构上的土压力理论还 没有正式提出,要精确地加以确定是不可能的。而且由于土的土质比较复杂,土压力的计算还与支护结构的刚度和施工方法等有关,要精确地确定也是比较困难的。目前,土压力的计 算,仍然是简化后按库仑公式或朗肯公式进行。常用的公式为:
主动土压力:
Eα=1/2γH2tg2(45°-Φ/2)-2CHtg(45°-Φ/2)+2C2/γ
工中:Eα——主动土压力(KN),γ——土的容重,采用加权平均值。H——挡土桩长(m) 。Φ——土的内摩擦角(°)。C——土的内聚力(KN)。
被动土压力:EP=1/2γt2KPCt
式中:EP——被动土压力(KN),t——挡土桩的入土深度(m),KP——被动土压力系数,一般取K2=tg2(45°-Φ/2)。
  由于传统理论存在达些不足,在工程运用时就必须作经验修正,以便在一定程度上能够满足 工程上的使用要求,这也就是从以下几个方面具体考虑:
  2.1.土压力参数:尤其抗剪强度C/Φ的取值问题。抗剪强度指标的测定方法有总应力法和有 效应办法,前者采用总应力C、Φ值和天然重度γ(或饱和容量)计算土压力,并认为水压力包括在内,后者采用有效应力C、Φ及浮容量γ计算土压力,另解水压力,即是水土分算。 总应办法应用方便,适用于不透水或弱透水的粘土层。有效应力法应用于砂层。
  2.2.朗肯理论假定墙背与填土之间无摩擦力。这种假设造成计算主动土压力偏大,而被动土 压力偏小。主动土压力偏大则是偏安全的,而被动土压力偏小则是偏危险的。针对这一情况,在计算被动土压力时,采用修正后的被动土压力系数KP,因为库仑理论计算被动土压力 偏大。因此采用库仑理论中的被动土压力系数擦角δ,克服了朗肯理论在此方面的假定。可以求得修正后的KP是:KP=〔CosΨDCosδ[KF)]-Sin(Ψo+ δ)SinΨo〕2
式中是按等值内摩擦角计算,对粘性土取ΦD=Φ是根据经验取值,δ一般为1/3Φ-2/3Φ 。
  2.3.用等值内摩擦角计算主动土压力。在实践中,对于抗深在10m内的支护计算,把有粘聚 力的主动土压力Eα,计算式为:E=1/2CHtg2(45°-Φ/2)+2C2/γ。
  用等值内摩擦角时,按无粘性土三角形土压力并入Φo,E=1/2γH2tg(45°-Φ/ 2),而E=E由此可得:tg(45°-[SX(]Φo2= rH2tg2(45°-Ψ/2)-4CHtg(45°-Ψ/2)+4C2/r2rH2
  2.4.深基坑开挖的空间效应。基坑的滑动面受到相邻边的制约影响,在中线的土压力最大, 而造近两边的压力则小,利用这种空间效应,可以在两边折减桩数或减少配筋量。
  2.5.重视场内外水的问题。注意降排水,因为土中含水量增加,抗剪强度降低,水分在较大 土粒表面形成润滑剂,使摩擦力降低,而较小颗粒结合水膜变厚,降低了土的内聚力。
  综上所述,结合本场地地质资料以及所选择的基抗支护形成,水压力和土压力分别按以下方 式计算:
  2.5.1.水压力:因支护桩所处地层主要为粘性土层,且为硬塑中密状态,另开挖前已作降水 处理,故认为此压力采用水土合算是可行的。
  2.5.2.土压力:桩后主动土压力,采用朗肯主动土压力计算,即:Eα=1/2γH2tg2(4 5°-Φ/2)-2CHtg(45°-Φ/2)+2C2/γ
桩前被动土压力,采用修正后的朗肯被动土压力计算,即:EP=1/2γt2KP+2KP Ct。
式中:KP=〔CosΨCosδ-Sin(Ψ+δ)SinΨ 〕2
  3.护坡桩的设计
  该工程支护结构主要采用钢筋混凝土钻孔灌注桩加斜土锚的设计方案,桩的直径为600mm, 桩间净距为1000mm。考虑基坑附近建筑屋的影响,还有环城南路上机车等动截荷的影响,支 护设计时,笔者参照部分支护结构设计的相关情形取地面均布载荷q=40KN/m。
  3.1.桩上侧土压力:①桩后侧主动土压力,因为桩后土为三层(杂添土、粘土、粉粘土)所以 计算时采用加权平均值的C、Φ、γ,Φ=21.32,得:Eα=4.7H2-2.76H+108.49;②桩前侧被动土压力:因为桩前侧土为两层(粘土层、粉质粘土层),所以计算时应采用加权平均 值的C′、Φ′、γ′,得:EP=33.89676t2+104.5t;③均布载荷对桩的侧压力:由公式Eq=qKaH,得:Eq=18.672H。
  3.2.桩插入深度确定:计算前须作如下假设:(1)锚固点A无移动;(2)灌注桩埋在地下无移动;(3)自由端因较浅不作固定端,按地下简支计算。
  3.2.1.建立方程:对铰点(锚固点)A求矩,则必须满足:ΣMA=0
所以有:1KEP(23t+h-a)=Eq〔23 (h+t)-a〕+Ep(h+t2-α)q
式中:K为安全系数,取2,得:8.31t3+82.97t2-138.75t=114.12
  3.2.2.插入深度及柱长计算:根据实际情况t取最小正解;t=1.99m。
  根据《建筑结构设计手册》及综合地质资料,取安全系数为1.2,所以桩的总长度为:L=h+1 .5t=8.5+1.2♀1.99=12.4(m)
  3.3.锚拉力的计算:由于桩长已求出,对整个桩而言,由于力平衡原理可以求出A点的锚拉 力,ΣFA=0,即:Eα+Eq=Ep+TA,取t=1.99解得:TA=194.35(KN)
  4.土层锚定设计
  锚固点埋深α=2m,锚杆水平间距1.6m,锚杆倾角18°,这是因为考虑到:(1)基坑附近有环城南路和建筑物的存在,倾角小,锚杆的握裹力易满足;(2)支护所在粘土层较厚,并且均 一,可作为锚定区;(3)粘土层的下履层(粉质粘土层、粉砂层、圆砾层)都是饱水且较薄。
  4.1.土层锚杆抗拔计算:土层锚杆锚固端所在的粘土层:c=47.7kpΨ=20.72°r=20 .13kN/m2
  4.1.1.土层锚杆锚非固端段长度的确定。
  由三角关系有:BF=sin(45°-Φ/2)/sin(45°-Φ/2+a)•(H-a-d)代入数据计算得:BF=5.06 m
  4.1.2.土层锚杆锚段长度的确定:该土层锚杆采用非高压灌浆,则主体抗压强度按下面公式 计算:r=C+(1/2)rhtgΨ。式中:r——埋深h处的抗剪强度,K——安全系数1.5,d——锚杆孔径,取0.12m,锚固段长度L=17.98m
  5.结论
  深基坑支护工程是近二十年来随着城市高层建筑发展而发展的一门新的实践工程学,它还有 待于理论上的完善,如何取一种在经济技术上都合理的支护类型就必须充分考虑现场环境、工程地质条件以及工程要求。
 
北京北护城河松林闸深基坑工程支护方案优化探讨(刘纪峰 张会芝 张永红)


http://www.hwcc.com.cn
2007年8月24日    《施工技术》2006年7月    编辑:宋金凤



[摘要] 北京市北护城河新建松林闸深基坑工程,受周边复杂环境限制,原设计放坡开挖方案难以实施,本文结合工程实际,提出了支护优化方案,并从各方面对原方案和优化方案进行了对比,结果表明优化方案的合理性。
[关键词] 深基坑; 支护方案; 优化
[中图分类号] TU746.5 [文献标识码] A     [文章编号] 1002-8498 (2006) 07-0036-03
北京市北护城河新建松林闸深基坑支护工程,原设计采用了理论上比较经济的放坡开挖方案,但是受周边复杂环境条件的制约,放坡开挖并非最合理的。本文结合现场实际情况,提出了更为合理的优化设计方案。
1  工程概况
北京市护城河与北二环路平行,西起西直门暗涵出口,东到东北城角,全长5 820m ,新建松林闸位于0 + 825~0 + 939 段,开挖深度6.0~9.1m ,结构外边线距北侧滨河路1.5~6.0m ,距南侧北二环路边的公交车站1.5~5.5m ,计划在公交车站出口处留7m 的施工道路。如图1 所示。

据地质勘察报告,松林闸区现地面高程47.80m ,地下水位29.25~29.45m。各土层厚度及其性状如表1 所示。

2  支护优化途径及方案选择
加上无支护或简单护面的放坡方案,目前国内常用的支护方案主要可归纳为5 类,按造价高低,其选择流程为:放坡→坑壁土体加固类→排桩板桩类→地下连续墙→沉井、沉箱类。各类主要形式及其适用深度如下: ①水泥土搅拌桩 适用于基坑深度小于10m 或地下室不超过2 层的基坑工程。②土钉墙(插筋补强)  适用于基坑深度小于10m 或地下室不超过2 层的基坑工程;当基坑深度大于10m 而小于14m 时,此种方法只适用于北方地区及西南土质较好的地区情况。③排桩板桩类(造孔桩、沉管桩、钢板桩等)  适用于基坑深度不超过14m 的各种情况;当基坑深度超过14m 或有4 层以上地下室或特种结构的基坑工程,此种方法只适用于北方地区及西南土质较好的地区情况。④地下连续墙 开槽灌注式施工方法适用于各种情况;SMW工法适用于沿海及南方软土地区情况。⑤沉井、沉箱类 适用于沿海及南方软土地区各种情况。
无支护或简单护面的放坡方案最为经济,如果场地空间允许且无深厚软土,应优先考虑。但是,本工程周边环境复杂,若采用大放坡开挖,北侧滨河路和南岸的公交车站都要挖断。且施工经验表明,基坑开挖深度> 5m时,考虑到放坡增加的土方开挖、外运和回填等项费用,放坡开挖并不比其它支护经济。
本基坑开挖深度在6.0~9.1m,根据前面分析,可采取的深基坑支护结构形式主要有土钉墙、排桩板桩或地下连续墙,悬臂桩和水泥搅拌桩支护方案一般只适用于开挖深度在6.0~7.0m 以下的深基坑工程,普通悬臂桩的嵌固深度,须达到悬臂高度的1~2 倍,由于悬臂桩承受的弯矩很大,其侧向位移也很大。因此,当采用悬臂桩支护形式时,应考虑到基坑周边环境对基坑位移的敏感程度。当悬臂桩支护方案不可行时,可采用喷锚支护与排桩联合应用,即基坑边坡上部采用喷锚支护,下部采用护坡桩(或加锚杆、内支撑) ,以降低基坑工程造价;或者直接采用桩+ 锚杆(内支撑)支护结构。当地下连续墙作为外墙时,采用地下连续墙方案也能起到节约资金的作用。
深基坑工程的优化设计主要从以下4个方面进行: ①技术的可靠性、先进性以及施工的可行性; ②经济效益; ③环境影响; ④工期。按其阶段不同,深基坑工程的优化设计可分为三级优化:系统优化、设计计算优化和反演分析优化(见图2) 。
结合现场实际情况,施工单位考虑了土钉墙+ 桩锚联合支护方式,使用理正4.03基坑支护软件计算,各支护方式参数如下。
2.1  土钉墙支护参数
该部分基坑开挖深度8.30m,坑边荷载取q = 10kNPm2 ,坡度δ= 63.4°,放坡比例1∶0.5 , 土钉间距Sx ×Sy = 1.5m ×1.4m,梅花形布置,孔径10cm,倾角10°。根据内部稳定性及土钉抗拉强度验算,结合施工经验进行局部调整,土钉护坡设计数据如表2 所示。布钉及结构剖面、节点作法如图3 、4 所示。



2.2  排桩+ 锚杆支护参数
基坑开挖深度9.10m,坑边荷载q =10kNPm2 。排桩:桩径1.1m,桩距1.7m,桩长15.40m, 桩顶标高47.80m,嵌固长度6.50m,配筋主筋15Ф22 钢筋, 箍筋<8 @200 ,加强筋Ф14 @2 000 ,桩身C25 混凝土;锚杆: 标高23.80m, 孔径15cm, 孔距1.7m, 长度16.0m,自由端长4.0m, 2根ф22 钢筋,锁定在2 根I22B 上,锁定预应力180kN;桩顶联系梁: 截面1 100mm ×600mm,C25 混凝土, 主筋16Ф16 钢筋,箍筋Ф6.5 @200 ; 桩间土: 挂Ф6.5 @250 ×250 钢筋网片,布设长2.0m、间距1.0m、1Ф18 土钉,用1Ф14 钢筋和护坡桩相连,表面喷射5cm 厚C20 碎石混凝土,限于篇幅,此处不再给出详图。
3  优化方案与原方案对比
下面从几个方面对优化方案与原方案对比: ①技术的可靠性、先进性 原方案可靠,无先进性;优化方案可靠,较先进。②施工的可行性 原方案施工无可行性;优化方案可行。③经济效益 原方案破坏道路及公交站且需拆迁31 棵树木和1 条过河污水管线,总费用逾700 万元;优化方案仅有7 棵树木需要迁移,初步概算费用487 万元,节省200 余万元。④环境影响 原方案需要开挖土方4 万m3 ,回填2 万m3 ,扬尘和噪声污染严重,挖断滨河路和公交车站,严重影响交通状况,树木迁移影响景观,管线破坏影响居民用水;优化方案采取人工挖孔桩,无扬尘和噪声污染等问题,较好地保护了环境。⑤工期 原方案需要同交通、电力、园林、市政等多部门交涉,工期无保证;优化方案工程进展顺利,工期有保证。⑥其它 原方案机械开挖无法及时探明未知地下管线,可能造成事故;优化方案人工挖孔,及时探明地下情况。
4  结语
针对本工程的周边环境条件,对比原设计采用的大放坡开挖方案,采用土钉墙+ 桩锚联合支护,技术上更可靠,施工更可行,节省资金,保护环境,保证了工期,实践证明,联合支护是本工程的优化方案。
参考文献:
[1]李纯,潘秀艳. 福建晋江某基坑支护方案设计[J ] . 施工技术,2005 ,34 (1) :21 - 22.
[2]徐杨青. 深基坑工程设计的优化原理与途径[J ] . 岩石力学与工程学报,2001 ,20(2) :248 - 251.
[作者简介] 刘纪峰(1979 —) ,男,河南沈丘人,中国矿业大学(北京) 博士研究生,北京中国矿大力建博0522 班。
来源:《施工技术》2006年7月

0406076101 2008-06-20 00:03
深基坑支护设计浅探——某综合楼工程为实例
作者:温茨华
阅读:2248 次
上传时间:2005-01-24
推荐人:iiwq (已传论文 49 套)
简介: 深基坑支护的设计、施工、监测技术是近10多年来在我国逐渐涉及的技术难题。深基坑的护 壁,不仅要求保证基坑内正常作业安全,而且要防止基坑及坑外土体移动,保证基坑附近建 筑物、道路、管线的正常运行。各地通过工程实践与科研,在基坑支护理论与技术上都有了 进一步的发展,取得了可喜的成绩。
关键字:基坑 地基基础

  1.深基坑支护类型选择
  深基坑支护不仅要求确保边坡的稳定,而且要满足变形控制要求,以确保基坑周围的建筑物 、地下管线、道路等的安全。如今支护结构日臻完善,出现了许多新的支护结构形式与稳定边坡的方法。
  根据本地区实际情况,经比较采用钻孔灌注桩作为挡土结构,由于基坑开采区主要为粘性土 ,它具有一定自稳定结构的特性,因此护坡桩采用间隔式钢筋混凝土钻孔灌注桩挡土,土层锚杆支护的方案,挡土支护结构布置如下:(1)护坡桩桩径600mm,桩净距1000mm;(2)土层 锚杆一排作单支撑,端部在地面以下2.00mm,下倾18°,间距1.6m;(3)腰梁一道,位于坡顶下2.00m处,通过腰梁,锚杆对护坡桩进行拉结;(4)桩间为粘性土不作处理。
  2.深基坑支护土压力
  深基坑支护是近些年来才发展起来的工程运用学科,新的完善的支护结构上的土压力理论还 没有正式提出,要精确地加以确定是不可能的。而且由于土的土质比较复杂,土压力的计算还与支护结构的刚度和施工方法等有关,要精确地确定也是比较困难的。目前,土压力的计 算,仍然是简化后按库仑公式或朗肯公式进行。常用的公式为:
主动土压力:
Eα=1/2γH2tg2(45°-Φ/2)-2CHtg(45°-Φ/2)+2C2/γ
工中:Eα——主动土压力(KN),γ——土的容重,采用加权平均值。H——挡土桩长(m) 。Φ——土的内摩擦角(°)。C——土的内聚力(KN)。
被动土压力:EP=1/2γt2KPCt
式中:EP——被动土压力(KN),t——挡土桩的入土深度(m),KP——被动土压力系数,一般取K2=tg2(45°-Φ/2)。
  由于传统理论存在达些不足,在工程运用时就必须作经验修正,以便在一定程度上能够满足 工程上的使用要求,这也就是从以下几个方面具体考虑:
  2.1.土压力参数:尤其抗剪强度C/Φ的取值问题。抗剪强度指标的测定方法有总应力法和有 效应办法,前者采用总应力C、Φ值和天然重度γ(或饱和容量)计算土压力,并认为水压力包括在内,后者采用有效应力C、Φ及浮容量γ计算土压力,另解水压力,即是水土分算。 总应办法应用方便,适用于不透水或弱透水的粘土层。有效应力法应用于砂层。
  2.2.朗肯理论假定墙背与填土之间无摩擦力。这种假设造成计算主动土压力偏大,而被动土 压力偏小。主动土压力偏大则是偏安全的,而被动土压力偏小则是偏危险的。针对这一情况,在计算被动土压力时,采用修正后的被动土压力系数KP,因为库仑理论计算被动土压力 偏大。因此采用库仑理论中的被动土压力系数擦角δ,克服了朗肯理论在此方面的假定。可以求得修正后的KP是:KP=〔CosΨDCosδ[KF)]-Sin(Ψo+ δ)SinΨo〕2
式中是按等值内摩擦角计算,对粘性土取ΦD=Φ是根据经验取值,δ一般为1/3Φ-2/3Φ 。
  2.3.用等值内摩擦角计算主动土压力。在实践中,对于抗深在10m内的支护计算,把有粘聚 力的主动土压力Eα,计算式为:E=1/2CHtg2(45°-Φ/2)+2C2/γ。
  用等值内摩擦角时,按无粘性土三角形土压力并入Φo,E=1/2γH2tg(45°-Φ/ 2),而E=E由此可得:tg(45°-[SX(]Φo2= rH2tg2(45°-Ψ/2)-4CHtg(45°-Ψ/2)+4C2/r2rH2
  2.4.深基坑开挖的空间效应。基坑的滑动面受到相邻边的制约影响,在中线的土压力最大, 而造近两边的压力则小,利用这种空间效应,可以在两边折减桩数或减少配筋量。
  2.5.重视场内外水的问题。注意降排水,因为土中含水量增加,抗剪强度降低,水分在较大 土粒表面形成润滑剂,使摩擦力降低,而较小颗粒结合水膜变厚,降低了土的内聚力。
  综上所述,结合本场地地质资料以及所选择的基抗支护形成,水压力和土压力分别按以下方 式计算:
  2.5.1.水压力:因支护桩所处地层主要为粘性土层,且为硬塑中密状态,另开挖前已作降水 处理,故认为此压力采用水土合算是可行的。
  2.5.2.土压力:桩后主动土压力,采用朗肯主动土压力计算,即:Eα=1/2γH2tg2(4 5°-Φ/2)-2CHtg(45°-Φ/2)+2C2/γ
桩前被动土压力,采用修正后的朗肯被动土压力计算,即:EP=1/2γt2KP+2KP Ct。
式中:KP=〔CosΨCosδ-Sin(Ψ+δ)SinΨ 〕2
  3.护坡桩的设计
  该工程支护结构主要采用钢筋混凝土钻孔灌注桩加斜土锚的设计方案,桩的直径为600mm, 桩间净距为1000mm。考虑基坑附近建筑屋的影响,还有环城南路上机车等动截荷的影响,支 护设计时,笔者参照部分支护结构设计的相关情形取地面均布载荷q=40KN/m。
  3.1.桩上侧土压力:①桩后侧主动土压力,因为桩后土为三层(杂添土、粘土、粉粘土)所以 计算时采用加权平均值的C、Φ、γ,Φ=21.32,得:Eα=4.7H2-2.76H+108.49;②桩前侧被动土压力:因为桩前侧土为两层(粘土层、粉质粘土层),所以计算时应采用加权平均 值的C′、Φ′、γ′,得:EP=33.89676t2+104.5t;③均布载荷对桩的侧压力:由公式Eq=qKaH,得:Eq=18.672H。
  3.2.桩插入深度确定:计算前须作如下假设:(1)锚固点A无移动;(2)灌注桩埋在地下无移动;(3)自由端因较浅不作固定端,按地下简支计算。
  3.2.1.建立方程:对铰点(锚固点)A求矩,则必须满足:ΣMA=0
所以有:1KEP(23t+h-a)=Eq〔23 (h+t)-a〕+Ep(h+t2-α)q
式中:K为安全系数,取2,得:8.31t3+82.97t2-138.75t=114.12
  3.2.2.插入深度及柱长计算:根据实际情况t取最小正解;t=1.99m。
  根据《建筑结构设计手册》及综合地质资料,取安全系数为1.2,所以桩的总长度为:L=h+1 .5t=8.5+1.2♀1.99=12.4(m)
  3.3.锚拉力的计算:由于桩长已求出,对整个桩而言,由于力平衡原理可以求出A点的锚拉 力,ΣFA=0,即:Eα+Eq=Ep+TA,取t=1.99解得:TA=194.35(KN)
  4.土层锚定设计
  锚固点埋深α=2m,锚杆水平间距1.6m,锚杆倾角18°,这是因为考虑到:(1)基坑附近有环城南路和建筑物的存在,倾角小,锚杆的握裹力易满足;(2)支护所在粘土层较厚,并且均 一,可作为锚定区;(3)粘土层的下履层(粉质粘土层、粉砂层、圆砾层)都是饱水且较薄。
  4.1.土层锚杆抗拔计算:土层锚杆锚固端所在的粘土层:c=47.7kpΨ=20.72°r=20 .13kN/m2
  4.1.1.土层锚杆锚非固端段长度的确定。
  由三角关系有:BF=sin(45°-Φ/2)/sin(45°-Φ/2+a)•(H-a-d)代入数据计算得:BF=5.06 m
  4.1.2.土层锚杆锚段长度的确定:该土层锚杆采用非高压灌浆,则主体抗压强度按下面公式 计算:r=C+(1/2)rhtgΨ。式中:r——埋深h处的抗剪强度,K——安全系数1.5,d——锚杆孔径,取0.12m,锚固段长度L=17.98m
  5.结论
  深基坑支护工程是近二十年来随着城市高层建筑发展而发展的一门新的实践工程学,它还有 待于理论上的完善,如何取一种在经济技术上都合理的支护类型就必须充分考虑现场环境、工程地质条件以及工程要求。
 
北京北护城河松林闸深基坑工程支护方案优化探讨(刘纪峰 张会芝 张永红)


http://www.hwcc.com.cn
2007年8月24日    《施工技术》2006年7月    编辑:宋金凤



[摘要] 北京市北护城河新建松林闸深基坑工程,受周边复杂环境限制,原设计放坡开挖方案难以实施,本文结合工程实际,提出了支护优化方案,并从各方面对原方案和优化方案进行了对比,结果表明优化方案的合理性。
[关键词] 深基坑; 支护方案; 优化
[中图分类号] TU746.5 [文献标识码] A     [文章编号] 1002-8498 (2006) 07-0036-03
北京市北护城河新建松林闸深基坑支护工程,原设计采用了理论上比较经济的放坡开挖方案,但是受周边复杂环境条件的制约,放坡开挖并非最合理的。本文结合现场实际情况,提出了更为合理的优化设计方案。
1  工程概况
北京市护城河与北二环路平行,西起西直门暗涵出口,东到东北城角,全长5 820m ,新建松林闸位于0 + 825~0 + 939 段,开挖深度6.0~9.1m ,结构外边线距北侧滨河路1.5~6.0m ,距南侧北二环路边的公交车站1.5~5.5m ,计划在公交车站出口处留7m 的施工道路。如图1 所示。

据地质勘察报告,松林闸区现地面高程47.80m ,地下水位29.25~29.45m。各土层厚度及其性状如表1 所示。

2  支护优化途径及方案选择
加上无支护或简单护面的放坡方案,目前国内常用的支护方案主要可归纳为5 类,按造价高低,其选择流程为:放坡→坑壁土体加固类→排桩板桩类→地下连续墙→沉井、沉箱类。各类主要形式及其适用深度如下: ①水泥土搅拌桩 适用于基坑深度小于10m 或地下室不超过2 层的基坑工程。②土钉墙(插筋补强)  适用于基坑深度小于10m 或地下室不超过2 层的基坑工程;当基坑深度大于10m 而小于14m 时,此种方法只适用于北方地区及西南土质较好的地区情况。③排桩板桩类(造孔桩、沉管桩、钢板桩等)  适用于基坑深度不超过14m 的各种情况;当基坑深度超过14m 或有4 层以上地下室或特种结构的基坑工程,此种方法只适用于北方地区及西南土质较好的地区情况。④地下连续墙 开槽灌注式施工方法适用于各种情况;SMW工法适用于沿海及南方软土地区情况。⑤沉井、沉箱类 适用于沿海及南方软土地区各种情况。
无支护或简单护面的放坡方案最为经济,如果场地空间允许且无深厚软土,应优先考虑。但是,本工程周边环境复杂,若采用大放坡开挖,北侧滨河路和南岸的公交车站都要挖断。且施工经验表明,基坑开挖深度> 5m时,考虑到放坡增加的土方开挖、外运和回填等项费用,放坡开挖并不比其它支护经济。
本基坑开挖深度在6.0~9.1m,根据前面分析,可采取的深基坑支护结构形式主要有土钉墙、排桩板桩或地下连续墙,悬臂桩和水泥搅拌桩支护方案一般只适用于开挖深度在6.0~7.0m 以下的深基坑工程,普通悬臂桩的嵌固深度,须达到悬臂高度的1~2 倍,由于悬臂桩承受的弯矩很大,其侧向位移也很大。因此,当采用悬臂桩支护形式时,应考虑到基坑周边环境对基坑位移的敏感程度。当悬臂桩支护方案不可行时,可采用喷锚支护与排桩联合应用,即基坑边坡上部采用喷锚支护,下部采用护坡桩(或加锚杆、内支撑) ,以降低基坑工程造价;或者直接采用桩+ 锚杆(内支撑)支护结构。当地下连续墙作为外墙时,采用地下连续墙方案也能起到节约资金的作用。
深基坑工程的优化设计主要从以下4个方面进行: ①技术的可靠性、先进性以及施工的可行性; ②经济效益; ③环境影响; ④工期。按其阶段不同,深基坑工程的优化设计可分为三级优化:系统优化、设计计算优化和反演分析优化(见图2) 。
结合现场实际情况,施工单位考虑了土钉墙+ 桩锚联合支护方式,使用理正4.03基坑支护软件计算,各支护方式参数如下。
2.1  土钉墙支护参数
该部分基坑开挖深度8.30m,坑边荷载取q = 10kNPm2 ,坡度δ= 63.4°,放坡比例1∶0.5 , 土钉间距Sx ×Sy = 1.5m ×1.4m,梅花形布置,孔径10cm,倾角10°。根据内部稳定性及土钉抗拉强度验算,结合施工经验进行局部调整,土钉护坡设计数据如表2 所示。布钉及结构剖面、节点作法如图3 、4 所示。



2.2  排桩+ 锚杆支护参数
基坑开挖深度9.10m,坑边荷载q =10kNPm2 。排桩:桩径1.1m,桩距1.7m,桩长15.40m, 桩顶标高47.80m,嵌固长度6.50m,配筋主筋15Ф22 钢筋, 箍筋<8 @200 ,加强筋Ф14 @2 000 ,桩身C25 混凝土;锚杆: 标高23.80m, 孔径15cm, 孔距1.7m, 长度16.0m,自由端长4.0m, 2根ф22 钢筋,锁定在2 根I22B 上,锁定预应力180kN;桩顶联系梁: 截面1 100mm ×600mm,C25 混凝土, 主筋16Ф16 钢筋,箍筋Ф6.5 @200 ; 桩间土: 挂Ф6.5 @250 ×250 钢筋网片,布设长2.0m、间距1.0m、1Ф18 土钉,用1Ф14 钢筋和护坡桩相连,表面喷射5cm 厚C20 碎石混凝土,限于篇幅,此处不再给出详图。
3  优化方案与原方案对比
下面从几个方面对优化方案与原方案对比: ①技术的可靠性、先进性 原方案可靠,无先进性;优化方案可靠,较先进。②施工的可行性 原方案施工无可行性;优化方案可行。③经济效益 原方案破坏道路及公交站且需拆迁31 棵树木和1 条过河污水管线,总费用逾700 万元;优化方案仅有7 棵树木需要迁移,初步概算费用487 万元,节省200 余万元。④环境影响 原方案需要开挖土方4 万m3 ,回填2 万m3 ,扬尘和噪声污染严重,挖断滨河路和公交车站,严重影响交通状况,树木迁移影响景观,管线破坏影响居民用水;优化方案采取人工挖孔桩,无扬尘和噪声污染等问题,较好地保护了环境。⑤工期 原方案需要同交通、电力、园林、市政等多部门交涉,工期无保证;优化方案工程进展顺利,工期有保证。⑥其它 原方案机械开挖无法及时探明未知地下管线,可能造成事故;优化方案人工挖孔,及时探明地下情况。
4  结语
针对本工程的周边环境条件,对比原设计采用的大放坡开挖方案,采用土钉墙+ 桩锚联合支护,技术上更可靠,施工更可行,节省资金,保护环境,保证了工期,实践证明,联合支护是本工程的优化方案。
参考文献:
[1]李纯,潘秀艳. 福建晋江某基坑支护方案设计[J ] . 施工技术,2005 ,34 (1) :21 - 22.
[2]徐杨青. 深基坑工程设计的优化原理与途径[J ] . 岩石力学与工程学报,2001 ,20(2) :248 - 251.
[作者简介] 刘纪峰(1979 —) ,男,河南沈丘人,中国矿业大学(北京) 博士研究生,北京中国矿大力建博0522 班。
来源:《施工技术》2006年7月

0406076101 2008-06-20 00:03
深基坑支护设计浅探——某综合楼工程为实例
作者:温茨华
阅读:2248 次
上传时间:2005-01-24
推荐人:iiwq (已传论文 49 套)
简介: 深基坑支护的设计、施工、监测技术是近10多年来在我国逐渐涉及的技术难题。深基坑的护 壁,不仅要求保证基坑内正常作业安全,而且要防止基坑及坑外土体移动,保证基坑附近建 筑物、道路、管线的正常运行。各地通过工程实践与科研,在基坑支护理论与技术上都有了 进一步的发展,取得了可喜的成绩。
关键字:基坑 地基基础

  1.深基坑支护类型选择
  深基坑支护不仅要求确保边坡的稳定,而且要满足变形控制要求,以确保基坑周围的建筑物 、地下管线、道路等的安全。如今支护结构日臻完善,出现了许多新的支护结构形式与稳定边坡的方法。
  根据本地区实际情况,经比较采用钻孔灌注桩作为挡土结构,由于基坑开采区主要为粘性土 ,它具有一定自稳定结构的特性,因此护坡桩采用间隔式钢筋混凝土钻孔灌注桩挡土,土层锚杆支护的方案,挡土支护结构布置如下:(1)护坡桩桩径600mm,桩净距1000mm;(2)土层 锚杆一排作单支撑,端部在地面以下2.00mm,下倾18°,间距1.6m;(3)腰梁一道,位于坡顶下2.00m处,通过腰梁,锚杆对护坡桩进行拉结;(4)桩间为粘性土不作处理。
  2.深基坑支护土压力
  深基坑支护是近些年来才发展起来的工程运用学科,新的完善的支护结构上的土压力理论还 没有正式提出,要精确地加以确定是不可能的。而且由于土的土质比较复杂,土压力的计算还与支护结构的刚度和施工方法等有关,要精确地确定也是比较困难的。目前,土压力的计 算,仍然是简化后按库仑公式或朗肯公式进行。常用的公式为:
主动土压力:
Eα=1/2γH2tg2(45°-Φ/2)-2CHtg(45°-Φ/2)+2C2/γ
工中:Eα——主动土压力(KN),γ——土的容重,采用加权平均值。H——挡土桩长(m) 。Φ——土的内摩擦角(°)。C——土的内聚力(KN)。
被动土压力:EP=1/2γt2KPCt
式中:EP——被动土压力(KN),t——挡土桩的入土深度(m),KP——被动土压力系数,一般取K2=tg2(45°-Φ/2)。
  由于传统理论存在达些不足,在工程运用时就必须作经验修正,以便在一定程度上能够满足 工程上的使用要求,这也就是从以下几个方面具体考虑:
  2.1.土压力参数:尤其抗剪强度C/Φ的取值问题。抗剪强度指标的测定方法有总应力法和有 效应办法,前者采用总应力C、Φ值和天然重度γ(或饱和容量)计算土压力,并认为水压力包括在内,后者采用有效应力C、Φ及浮容量γ计算土压力,另解水压力,即是水土分算。 总应办法应用方便,适用于不透水或弱透水的粘土层。有效应力法应用于砂层。
  2.2.朗肯理论假定墙背与填土之间无摩擦力。这种假设造成计算主动土压力偏大,而被动土 压力偏小。主动土压力偏大则是偏安全的,而被动土压力偏小则是偏危险的。针对这一情况,在计算被动土压力时,采用修正后的被动土压力系数KP,因为库仑理论计算被动土压力 偏大。因此采用库仑理论中的被动土压力系数擦角δ,克服了朗肯理论在此方面的假定。可以求得修正后的KP是:KP=〔CosΨDCosδ[KF)]-Sin(Ψo+ δ)SinΨo〕2
式中是按等值内摩擦角计算,对粘性土取ΦD=Φ是根据经验取值,δ一般为1/3Φ-2/3Φ 。
  2.3.用等值内摩擦角计算主动土压力。在实践中,对于抗深在10m内的支护计算,把有粘聚 力的主动土压力Eα,计算式为:E=1/2CHtg2(45°-Φ/2)+2C2/γ。
  用等值内摩擦角时,按无粘性土三角形土压力并入Φo,E=1/2γH2tg(45°-Φ/ 2),而E=E由此可得:tg(45°-[SX(]Φo2= rH2tg2(45°-Ψ/2)-4CHtg(45°-Ψ/2)+4C2/r2rH2
  2.4.深基坑开挖的空间效应。基坑的滑动面受到相邻边的制约影响,在中线的土压力最大, 而造近两边的压力则小,利用这种空间效应,可以在两边折减桩数或减少配筋量。
  2.5.重视场内外水的问题。注意降排水,因为土中含水量增加,抗剪强度降低,水分在较大 土粒表面形成润滑剂,使摩擦力降低,而较小颗粒结合水膜变厚,降低了土的内聚力。
  综上所述,结合本场地地质资料以及所选择的基抗支护形成,水压力和土压力分别按以下方 式计算:
  2.5.1.水压力:因支护桩所处地层主要为粘性土层,且为硬塑中密状态,另开挖前已作降水 处理,故认为此压力采用水土合算是可行的。
  2.5.2.土压力:桩后主动土压力,采用朗肯主动土压力计算,即:Eα=1/2γH2tg2(4 5°-Φ/2)-2CHtg(45°-Φ/2)+2C2/γ
桩前被动土压力,采用修正后的朗肯被动土压力计算,即:EP=1/2γt2KP+2KP Ct。
式中:KP=〔CosΨCosδ-Sin(Ψ+δ)SinΨ 〕2
  3.护坡桩的设计
  该工程支护结构主要采用钢筋混凝土钻孔灌注桩加斜土锚的设计方案,桩的直径为600mm, 桩间净距为1000mm。考虑基坑附近建筑屋的影响,还有环城南路上机车等动截荷的影响,支 护设计时,笔者参照部分支护结构设计的相关情形取地面均布载荷q=40KN/m。
  3.1.桩上侧土压力:①桩后侧主动土压力,因为桩后土为三层(杂添土、粘土、粉粘土)所以 计算时采用加权平均值的C、Φ、γ,Φ=21.32,得:Eα=4.7H2-2.76H+108.49;②桩前侧被动土压力:因为桩前侧土为两层(粘土层、粉质粘土层),所以计算时应采用加权平均 值的C′、Φ′、γ′,得:EP=33.89676t2+104.5t;③均布载荷对桩的侧压力:由公式Eq=qKaH,得:Eq=18.672H。
  3.2.桩插入深度确定:计算前须作如下假设:(1)锚固点A无移动;(2)灌注桩埋在地下无移动;(3)自由端因较浅不作固定端,按地下简支计算。
  3.2.1.建立方程:对铰点(锚固点)A求矩,则必须满足:ΣMA=0
所以有:1KEP(23t+h-a)=Eq〔23 (h+t)-a〕+Ep(h+t2-α)q
式中:K为安全系数,取2,得:8.31t3+82.97t2-138.75t=114.12
  3.2.2.插入深度及柱长计算:根据实际情况t取最小正解;t=1.99m。
  根据《建筑结构设计手册》及综合地质资料,取安全系数为1.2,所以桩的总长度为:L=h+1 .5t=8.5+1.2♀1.99=12.4(m)
  3.3.锚拉力的计算:由于桩长已求出,对整个桩而言,由于力平衡原理可以求出A点的锚拉 力,ΣFA=0,即:Eα+Eq=Ep+TA,取t=1.99解得:TA=194.35(KN)
  4.土层锚定设计
  锚固点埋深α=2m,锚杆水平间距1.6m,锚杆倾角18°,这是因为考虑到:(1)基坑附近有环城南路和建筑物的存在,倾角小,锚杆的握裹力易满足;(2)支护所在粘土层较厚,并且均 一,可作为锚定区;(3)粘土层的下履层(粉质粘土层、粉砂层、圆砾层)都是饱水且较薄。
  4.1.土层锚杆抗拔计算:土层锚杆锚固端所在的粘土层:c=47.7kpΨ=20.72°r=20 .13kN/m2
  4.1.1.土层锚杆锚非固端段长度的确定。
  由三角关系有:BF=sin(45°-Φ/2)/sin(45°-Φ/2+a)•(H-a-d)代入数据计算得:BF=5.06 m
  4.1.2.土层锚杆锚段长度的确定:该土层锚杆采用非高压灌浆,则主体抗压强度按下面公式 计算:r=C+(1/2)rhtgΨ。式中:r——埋深h处的抗剪强度,K——安全系数1.5,d——锚杆孔径,取0.12m,锚固段长度L=17.98m
  5.结论
  深基坑支护工程是近二十年来随着城市高层建筑发展而发展的一门新的实践工程学,它还有 待于理论上的完善,如何取一种在经济技术上都合理的支护类型就必须充分考虑现场环境、工程地质条件以及工程要求。
 
北京北护城河松林闸深基坑工程支护方案优化探讨(刘纪峰 张会芝 张永红)


http://www.hwcc.com.cn
2007年8月24日    《施工技术》2006年7月    编辑:宋金凤



[摘要] 北京市北护城河新建松林闸深基坑工程,受周边复杂环境限制,原设计放坡开挖方案难以实施,本文结合工程实际,提出了支护优化方案,并从各方面对原方案和优化方案进行了对比,结果表明优化方案的合理性。
[关键词] 深基坑; 支护方案; 优化
[中图分类号] TU746.5 [文献标识码] A     [文章编号] 1002-8498 (2006) 07-0036-03
北京市北护城河新建松林闸深基坑支护工程,原设计采用了理论上比较经济的放坡开挖方案,但是受周边复杂环境条件的制约,放坡开挖并非最合理的。本文结合现场实际情况,提出了更为合理的优化设计方案。
1  工程概况
北京市护城河与北二环路平行,西起西直门暗涵出口,东到东北城角,全长5 820m ,新建松林闸位于0 + 825~0 + 939 段,开挖深度6.0~9.1m ,结构外边线距北侧滨河路1.5~6.0m ,距南侧北二环路边的公交车站1.5~5.5m ,计划在公交车站出口处留7m 的施工道路。如图1 所示。

据地质勘察报告,松林闸区现地面高程47.80m ,地下水位29.25~29.45m。各土层厚度及其性状如表1 所示。

2  支护优化途径及方案选择
加上无支护或简单护面的放坡方案,目前国内常用的支护方案主要可归纳为5 类,按造价高低,其选择流程为:放坡→坑壁土体加固类→排桩板桩类→地下连续墙→沉井、沉箱类。各类主要形式及其适用深度如下: ①水泥土搅拌桩 适用于基坑深度小于10m 或地下室不超过2 层的基坑工程。②土钉墙(插筋补强)  适用于基坑深度小于10m 或地下室不超过2 层的基坑工程;当基坑深度大于10m 而小于14m 时,此种方法只适用于北方地区及西南土质较好的地区情况。③排桩板桩类(造孔桩、沉管桩、钢板桩等)  适用于基坑深度不超过14m 的各种情况;当基坑深度超过14m 或有4 层以上地下室或特种结构的基坑工程,此种方法只适用于北方地区及西南土质较好的地区情况。④地下连续墙 开槽灌注式施工方法适用于各种情况;SMW工法适用于沿海及南方软土地区情况。⑤沉井、沉箱类 适用于沿海及南方软土地区各种情况。
无支护或简单护面的放坡方案最为经济,如果场地空间允许且无深厚软土,应优先考虑。但是,本工程周边环境复杂,若采用大放坡开挖,北侧滨河路和南岸的公交车站都要挖断。且施工经验表明,基坑开挖深度> 5m时,考虑到放坡增加的土方开挖、外运和回填等项费用,放坡开挖并不比其它支护经济。
本基坑开挖深度在6.0~9.1m,根据前面分析,可采取的深基坑支护结构形式主要有土钉墙、排桩板桩或地下连续墙,悬臂桩和水泥搅拌桩支护方案一般只适用于开挖深度在6.0~7.0m 以下的深基坑工程,普通悬臂桩的嵌固深度,须达到悬臂高度的1~2 倍,由于悬臂桩承受的弯矩很大,其侧向位移也很大。因此,当采用悬臂桩支护形式时,应考虑到基坑周边环境对基坑位移的敏感程度。当悬臂桩支护方案不可行时,可采用喷锚支护与排桩联合应用,即基坑边坡上部采用喷锚支护,下部采用护坡桩(或加锚杆、内支撑) ,以降低基坑工程造价;或者直接采用桩+ 锚杆(内支撑)支护结构。当地下连续墙作为外墙时,采用地下连续墙方案也能起到节约资金的作用。
深基坑工程的优化设计主要从以下4个方面进行: ①技术的可靠性、先进性以及施工的可行性; ②经济效益; ③环境影响; ④工期。按其阶段不同,深基坑工程的优化设计可分为三级优化:系统优化、设计计算优化和反演分析优化(见图2) 。
结合现场实际情况,施工单位考虑了土钉墙+ 桩锚联合支护方式,使用理正4.03基坑支护软件计算,各支护方式参数如下。
2.1  土钉墙支护参数
该部分基坑开挖深度8.30m,坑边荷载取q = 10kNPm2 ,坡度δ= 63.4°,放坡比例1∶0.5 , 土钉间距Sx ×Sy = 1.5m ×1.4m,梅花形布置,孔径10cm,倾角10°。根据内部稳定性及土钉抗拉强度验算,结合施工经验进行局部调整,土钉护坡设计数据如表2 所示。布钉及结构剖面、节点作法如图3 、4 所示。



2.2  排桩+ 锚杆支护参数
基坑开挖深度9.10m,坑边荷载q =10kNPm2 。排桩:桩径1.1m,桩距1.7m,桩长15.40m, 桩顶标高47.80m,嵌固长度6.50m,配筋主筋15Ф22 钢筋, 箍筋<8 @200 ,加强筋Ф14 @2 000 ,桩身C25 混凝土;锚杆: 标高23.80m, 孔径15cm, 孔距1.7m, 长度16.0m,自由端长4.0m, 2根ф22 钢筋,锁定在2 根I22B 上,锁定预应力180kN;桩顶联系梁: 截面1 100mm ×600mm,C25 混凝土, 主筋16Ф16 钢筋,箍筋Ф6.5 @200 ; 桩间土: 挂Ф6.5 @250 ×250 钢筋网片,布设长2.0m、间距1.0m、1Ф18 土钉,用1Ф14 钢筋和护坡桩相连,表面喷射5cm 厚C20 碎石混凝土,限于篇幅,此处不再给出详图。
3  优化方案与原方案对比
下面从几个方面对优化方案与原方案对比: ①技术的可靠性、先进性 原方案可靠,无先进性;优化方案可靠,较先进。②施工的可行性 原方案施工无可行性;优化方案可行。③经济效益 原方案破坏道路及公交站且需拆迁31 棵树木和1 条过河污水管线,总费用逾700 万元;优化方案仅有7 棵树木需要迁移,初步概算费用487 万元,节省200 余万元。④环境影响 原方案需要开挖土方4 万m3 ,回填2 万m3 ,扬尘和噪声污染严重,挖断滨河路和公交车站,严重影响交通状况,树木迁移影响景观,管线破坏影响居民用水;优化方案采取人工挖孔桩,无扬尘和噪声污染等问题,较好地保护了环境。⑤工期 原方案需要同交通、电力、园林、市政等多部门交涉,工期无保证;优化方案工程进展顺利,工期有保证。⑥其它 原方案机械开挖无法及时探明未知地下管线,可能造成事故;优化方案人工挖孔,及时探明地下情况。
4  结语
针对本工程的周边环境条件,对比原设计采用的大放坡开挖方案,采用土钉墙+ 桩锚联合支护,技术上更可靠,施工更可行,节省资金,保护环境,保证了工期,实践证明,联合支护是本工程的优化方案。
参考文献:
[1]李纯,潘秀艳. 福建晋江某基坑支护方案设计[J ] . 施工技术,2005 ,34 (1) :21 - 22.
[2]徐杨青. 深基坑工程设计的优化原理与途径[J ] . 岩石力学与工程学报,2001 ,20(2) :248 - 251.
[作者简介] 刘纪峰(1979 —) ,男,河南沈丘人,中国矿业大学(北京) 博士研究生,北京中国矿大力建博0522 班。
来源:《施工技术》2006年7月

0406076101 2008-06-20 00:06
深基坑支护设计浅探——某综合楼工程为实例
作者:温茨华
阅读:2248 次
上传时间:2005-01-24
推荐人:iiwq (已传论文 49 套)
简介: 深基坑支护的设计、施工、监测技术是近10多年来在我国逐渐涉及的技术难题。深基坑的护 壁,不仅要求保证基坑内正常作业安全,而且要防止基坑及坑外土体移动,保证基坑附近建 筑物、道路、管线的正常运行。各地通过工程实践与科研,在基坑支护理论与技术上都有了 进一步的发展,取得了可喜的成绩。
关键字:基坑 地基基础

  1.深基坑支护类型选择
  深基坑支护不仅要求确保边坡的稳定,而且要满足变形控制要求,以确保基坑周围的建筑物 、地下管线、道路等的安全。如今支护结构日臻完善,出现了许多新的支护结构形式与稳定边坡的方法。
  根据本地区实际情况,经比较采用钻孔灌注桩作为挡土结构,由于基坑开采区主要为粘性土 ,它具有一定自稳定结构的特性,因此护坡桩采用间隔式钢筋混凝土钻孔灌注桩挡土,土层锚杆支护的方案,挡土支护结构布置如下:(1)护坡桩桩径600mm,桩净距1000mm;(2)土层 锚杆一排作单支撑,端部在地面以下2.00mm,下倾18°,间距1.6m;(3)腰梁一道,位于坡顶下2.00m处,通过腰梁,锚杆对护坡桩进行拉结;(4)桩间为粘性土不作处理。
  2.深基坑支护土压力
  深基坑支护是近些年来才发展起来的工程运用学科,新的完善的支护结构上的土压力理论还 没有正式提出,要精确地加以确定是不可能的。而且由于土的土质比较复杂,土压力的计算还与支护结构的刚度和施工方法等有关,要精确地确定也是比较困难的。目前,土压力的计 算,仍然是简化后按库仑公式或朗肯公式进行。常用的公式为:
主动土压力:
Eα=1/2γH2tg2(45°-Φ/2)-2CHtg(45°-Φ/2)+2C2/γ
工中:Eα——主动土压力(KN),γ——土的容重,采用加权平均值。H——挡土桩长(m) 。Φ——土的内摩擦角(°)。C——土的内聚力(KN)。
被动土压力:EP=1/2γt2KPCt
式中:EP——被动土压力(KN),t——挡土桩的入土深度(m),KP——被动土压力系数,一般取K2=tg2(45°-Φ/2)。
  由于传统理论存在达些不足,在工程运用时就必须作经验修正,以便在一定程度上能够满足 工程上的使用要求,这也就是从以下几个方面具体考虑:
  2.1.土压力参数:尤其抗剪强度C/Φ的取值问题。抗剪强度指标的测定方法有总应力法和有 效应办法,前者采用总应力C、Φ值和天然重度γ(或饱和容量)计算土压力,并认为水压力包括在内,后者采用有效应力C、Φ及浮容量γ计算土压力,另解水压力,即是水土分算。 总应办法应用方便,适用于不透水或弱透水的粘土层。有效应力法应用于砂层。
  2.2.朗肯理论假定墙背与填土之间无摩擦力。这种假设造成计算主动土压力偏大,而被动土 压力偏小。主动土压力偏大则是偏安全的,而被动土压力偏小则是偏危险的。针对这一情况,在计算被动土压力时,采用修正后的被动土压力系数KP,因为库仑理论计算被动土压力 偏大。因此采用库仑理论中的被动土压力系数擦角δ,克服了朗肯理论在此方面的假定。可以求得修正后的KP是:KP=〔CosΨDCosδ[KF)]-Sin(Ψo+ δ)SinΨo〕2
式中是按等值内摩擦角计算,对粘性土取ΦD=Φ是根据经验取值,δ一般为1/3Φ-2/3Φ 。
  2.3.用等值内摩擦角计算主动土压力。在实践中,对于抗深在10m内的支护计算,把有粘聚 力的主动土压力Eα,计算式为:E=1/2CHtg2(45°-Φ/2)+2C2/γ。
  用等值内摩擦角时,按无粘性土三角形土压力并入Φo,E=1/2γH2tg(45°-Φ/ 2),而E=E由此可得:tg(45°-[SX(]Φo2= rH2tg2(45°-Ψ/2)-4CHtg(45°-Ψ/2)+4C2/r2rH2
  2.4.深基坑开挖的空间效应。基坑的滑动面受到相邻边的制约影响,在中线的土压力最大, 而造近两边的压力则小,利用这种空间效应,可以在两边折减桩数或减少配筋量。
  2.5.重视场内外水的问题。注意降排水,因为土中含水量增加,抗剪强度降低,水分在较大 土粒表面形成润滑剂,使摩擦力降低,而较小颗粒结合水膜变厚,降低了土的内聚力。
  综上所述,结合本场地地质资料以及所选择的基抗支护形成,水压力和土压力分别按以下方 式计算:
  2.5.1.水压力:因支护桩所处地层主要为粘性土层,且为硬塑中密状态,另开挖前已作降水 处理,故认为此压力采用水土合算是可行的。
  2.5.2.土压力:桩后主动土压力,采用朗肯主动土压力计算,即:Eα=1/2γH2tg2(4 5°-Φ/2)-2CHtg(45°-Φ/2)+2C2/γ
桩前被动土压力,采用修正后的朗肯被动土压力计算,即:EP=1/2γt2KP+2KP Ct。
式中:KP=〔CosΨCosδ-Sin(Ψ+δ)SinΨ 〕2
  3.护坡桩的设计
  该工程支护结构主要采用钢筋混凝土钻孔灌注桩加斜土锚的设计方案,桩的直径为600mm, 桩间净距为1000mm。考虑基坑附近建筑屋的影响,还有环城南路上机车等动截荷的影响,支 护设计时,笔者参照部分支护结构设计的相关情形取地面均布载荷q=40KN/m。
  3.1.桩上侧土压力:①桩后侧主动土压力,因为桩后土为三层(杂添土、粘土、粉粘土)所以 计算时采用加权平均值的C、Φ、γ,Φ=21.32,得:Eα=4.7H2-2.76H+108.49;②桩前侧被动土压力:因为桩前侧土为两层(粘土层、粉质粘土层),所以计算时应采用加权平均 值的C′、Φ′、γ′,得:EP=33.89676t2+104.5t;③均布载荷对桩的侧压力:由公式Eq=qKaH,得:Eq=18.672H。
  3.2.桩插入深度确定:计算前须作如下假设:(1)锚固点A无移动;(2)灌注桩埋在地下无移动;(3)自由端因较浅不作固定端,按地下简支计算。
  3.2.1.建立方程:对铰点(锚固点)A求矩,则必须满足:ΣMA=0
所以有:1KEP(23t+h-a)=Eq〔23 (h+t)-a〕+Ep(h+t2-α)q
式中:K为安全系数,取2,得:8.31t3+82.97t2-138.75t=114.12
  3.2.2.插入深度及柱长计算:根据实际情况t取最小正解;t=1.99m。
  根据《建筑结构设计手册》及综合地质资料,取安全系数为1.2,所以桩的总长度为:L=h+1 .5t=8.5+1.2♀1.99=12.4(m)
  3.3.锚拉力的计算:由于桩长已求出,对整个桩而言,由于力平衡原理可以求出A点的锚拉 力,ΣFA=0,即:Eα+Eq=Ep+TA,取t=1.99解得:TA=194.35(KN)
  4.土层锚定设计
  锚固点埋深α=2m,锚杆水平间距1.6m,锚杆倾角18°,这是因为考虑到:(1)基坑附近有环城南路和建筑物的存在,倾角小,锚杆的握裹力易满足;(2)支护所在粘土层较厚,并且均 一,可作为锚定区;(3)粘土层的下履层(粉质粘土层、粉砂层、圆砾层)都是饱水且较薄。
  4.1.土层锚杆抗拔计算:土层锚杆锚固端所在的粘土层:c=47.7kpΨ=20.72°r=20 .13kN/m2
  4.1.1.土层锚杆锚非固端段长度的确定。
  由三角关系有:BF=sin(45°-Φ/2)/sin(45°-Φ/2+a)•(H-a-d)代入数据计算得:BF=5.06 m
  4.1.2.土层锚杆锚段长度的确定:该土层锚杆采用非高压灌浆,则主体抗压强度按下面公式 计算:r=C+(1/2)rhtgΨ。式中:r——埋深h处的抗剪强度,K——安全系数1.5,d——锚杆孔径,取0.12m,锚固段长度L=17.98m
  5.结论
  深基坑支护工程是近二十年来随着城市高层建筑发展而发展的一门新的实践工程学,它还有 待于理论上的完善,如何取一种在经济技术上都合理的支护类型就必须充分考虑现场环境、工程地质条件以及工程要求。
 
北京北护城河松林闸深基坑工程支护方案优化探讨(刘纪峰 张会芝 张永红)


http://www.hwcc.com.cn
2007年8月24日    《施工技术》2006年7月    编辑:宋金凤



[摘要] 北京市北护城河新建松林闸深基坑工程,受周边复杂环境限制,原设计放坡开挖方案难以实施,本文结合工程实际,提出了支护优化方案,并从各方面对原方案和优化方案进行了对比,结果表明优化方案的合理性。
[关键词] 深基坑; 支护方案; 优化
[中图分类号] TU746.5 [文献标识码] A     [文章编号] 1002-8498 (2006) 07-0036-03
北京市北护城河新建松林闸深基坑支护工程,原设计采用了理论上比较经济的放坡开挖方案,但是受周边复杂环境条件的制约,放坡开挖并非最合理的。本文结合现场实际情况,提出了更为合理的优化设计方案。
1  工程概况
北京市护城河与北二环路平行,西起西直门暗涵出口,东到东北城角,全长5 820m ,新建松林闸位于0 + 825~0 + 939 段,开挖深度6.0~9.1m ,结构外边线距北侧滨河路1.5~6.0m ,距南侧北二环路边的公交车站1.5~5.5m ,计划在公交车站出口处留7m 的施工道路。如图1 所示。

据地质勘察报告,松林闸区现地面高程47.80m ,地下水位29.25~29.45m。各土层厚度及其性状如表1 所示。

2  支护优化途径及方案选择
加上无支护或简单护面的放坡方案,目前国内常用的支护方案主要可归纳为5 类,按造价高低,其选择流程为:放坡→坑壁土体加固类→排桩板桩类→地下连续墙→沉井、沉箱类。各类主要形式及其适用深度如下: ①水泥土搅拌桩 适用于基坑深度小于10m 或地下室不超过2 层的基坑工程。②土钉墙(插筋补强)  适用于基坑深度小于10m 或地下室不超过2 层的基坑工程;当基坑深度大于10m 而小于14m 时,此种方法只适用于北方地区及西南土质较好的地区情况。③排桩板桩类(造孔桩、沉管桩、钢板桩等)  适用于基坑深度不超过14m 的各种情况;当基坑深度超过14m 或有4 层以上地下室或特种结构的基坑工程,此种方法只适用于北方地区及西南土质较好的地区情况。④地下连续墙 开槽灌注式施工方法适用于各种情况;SMW工法适用于沿海及南方软土地区情况。⑤沉井、沉箱类 适用于沿海及南方软土地区各种情况。
无支护或简单护面的放坡方案最为经济,如果场地空间允许且无深厚软土,应优先考虑。但是,本工程周边环境复杂,若采用大放坡开挖,北侧滨河路和南岸的公交车站都要挖断。且施工经验表明,基坑开挖深度> 5m时,考虑到放坡增加的土方开挖、外运和回填等项费用,放坡开挖并不比其它支护经济。
本基坑开挖深度在6.0~9.1m,根据前面分析,可采取的深基坑支护结构形式主要有土钉墙、排桩板桩或地下连续墙,悬臂桩和水泥搅拌桩支护方案一般只适用于开挖深度在6.0~7.0m 以下的深基坑工程,普通悬臂桩的嵌固深度,须达到悬臂高度的1~2 倍,由于悬臂桩承受的弯矩很大,其侧向位移也很大。因此,当采用悬臂桩支护形式时,应考虑到基坑周边环境对基坑位移的敏感程度。当悬臂桩支护方案不可行时,可采用喷锚支护与排桩联合应用,即基坑边坡上部采用喷锚支护,下部采用护坡桩(或加锚杆、内支撑) ,以降低基坑工程造价;或者直接采用桩+ 锚杆(内支撑)支护结构。当地下连续墙作为外墙时,采用地下连续墙方案也能起到节约资金的作用。
深基坑工程的优化设计主要从以下4个方面进行: ①技术的可靠性、先进性以及施工的可行性; ②经济效益; ③环境影响; ④工期。按其阶段不同,深基坑工程的优化设计可分为三级优化:系统优化、设计计算优化和反演分析优化(见图2) 。
结合现场实际情况,施工单位考虑了土钉墙+ 桩锚联合支护方式,使用理正4.03基坑支护软件计算,各支护方式参数如下。
2.1  土钉墙支护参数
该部分基坑开挖深度8.30m,坑边荷载取q = 10kNPm2 ,坡度δ= 63.4°,放坡比例1∶0.5 , 土钉间距Sx ×Sy = 1.5m ×1.4m,梅花形布置,孔径10cm,倾角10°。根据内部稳定性及土钉抗拉强度验算,结合施工经验进行局部调整,土钉护坡设计数据如表2 所示。布钉及结构剖面、节点作法如图3 、4 所示。



2.2  排桩+ 锚杆支护参数
基坑开挖深度9.10m,坑边荷载q =10kNPm2 。排桩:桩径1.1m,桩距1.7m,桩长15.40m, 桩顶标高47.80m,嵌固长度6.50m,配筋主筋15Ф22 钢筋, 箍筋<8 @200 ,加强筋Ф14 @2 000 ,桩身C25 混凝土;锚杆: 标高23.80m, 孔径15cm, 孔距1.7m, 长度16.0m,自由端长4.0m, 2根ф22 钢筋,锁定在2 根I22B 上,锁定预应力180kN;桩顶联系梁: 截面1 100mm ×600mm,C25 混凝土, 主筋16Ф16 钢筋,箍筋Ф6.5 @200 ; 桩间土: 挂Ф6.5 @250 ×250 钢筋网片,布设长2.0m、间距1.0m、1Ф18 土钉,用1Ф14 钢筋和护坡桩相连,表面喷射5cm 厚C20 碎石混凝土,限于篇幅,此处不再给出详图。
3  优化方案与原方案对比
下面从几个方面对优化方案与原方案对比: ①技术的可靠性、先进性 原方案可靠,无先进性;优化方案可靠,较先进。②施工的可行性 原方案施工无可行性;优化方案可行。③经济效益 原方案破坏道路及公交站且需拆迁31 棵树木和1 条过河污水管线,总费用逾700 万元;优化方案仅有7 棵树木需要迁移,初步概算费用487 万元,节省200 余万元。④环境影响 原方案需要开挖土方4 万m3 ,回填2 万m3 ,扬尘和噪声污染严重,挖断滨河路和公交车站,严重影响交通状况,树木迁移影响景观,管线破坏影响居民用水;优化方案采取人工挖孔桩,无扬尘和噪声污染等问题,较好地保护了环境。⑤工期 原方案需要同交通、电力、园林、市政等多部门交涉,工期无保证;优化方案工程进展顺利,工期有保证。⑥其它 原方案机械开挖无法及时探明未知地下管线,可能造成事故;优化方案人工挖孔,及时探明地下情况。
4  结语
针对本工程的周边环境条件,对比原设计采用的大放坡开挖方案,采用土钉墙+ 桩锚联合支护,技术上更可靠,施工更可行,节省资金,保护环境,保证了工期,实践证明,联合支护是本工程的优化方案。
参考文献:
[1]李纯,潘秀艳. 福建晋江某基坑支护方案设计[J ] . 施工技术,2005 ,34 (1) :21 - 22.
[2]徐杨青. 深基坑工程设计的优化原理与途径[J ] . 岩石力学与工程学报,2001 ,20(2) :248 - 251.
[作者简介] 刘纪峰(1979 —) ,男,河南沈丘人,中国矿业大学(北京) 博士研究生,北京中国矿大力建博0522 班。
来源:《施工技术》2006年7月

搏弈 2008-07-24 23:28
学习一下啊

付07 2008-08-12 20:52
学习学习谢谢

fuxg1123 2008-09-02 09:29
[s:69]  [s:69]

lz1228 2008-11-14 15:01
谢谢楼主上传!

nancy321 2008-11-19 17:16
很好,非常感谢楼主提供的资料!!!!!!!!!!!!!

0406076101 2008-11-22 23:18
土力学实验指导

一、环刀法密度和含水率实验
1.    适用范围
本实验适用于各类工程的地基、路基、填筑以及其它路用的细粒土及无机结合料细粒土的现场取样检测密度及压实度(系数)。
2.检测用仪器设备
2.1环刀:壁厚:1.5-2(mm), 容积:200±0.8(cm3)、100±0.43(cm3)、内径6.18cm;
2.2天平:感量:0.1g,最大称量应大于环刀加被取土的质量;感量:0.01g;
2.3铝盒及盒盖:有同一永久性编号,尺寸与环刀相配;
2.4烘箱:能准确控制温度在105-110℃;
2.5取土器或带手柄环刀盖;
2.6其他:锤、修土刀、钢丝锯、凡士林等。
3.试样尺寸
  试样体积:200cm3 、100 cm3、60cm3;
4.取样前准备工作
4.1检查环刀壁,刀口是否完好,在环刀内壁涂一薄层凡士林;
4.2备齐带手柄环刀盖、取土器、修土刀、铝盒、铁铲、锤等。
5.取样方法
5.1 手锤打入法
5.1.1确定取样地点,记录该点的桩号及标高;
5.1.2将环刀刀口向下垂直放在土样上,将带手柄环刀盖盖在环刀刀背上;
5.1.3锤击环刀盖手柄使环刀垂直均匀地切入土样,当刀盖上小孔有土冒出时停止锤击;
5.1.4在距环刀150-200(mm)侧面用铁铲铲入,取出环刀;
5.1.5擦净环刀外壁,用修土刀或钢丝锯削去环刀两端余土,并使土与环刀口齐平,在削土时不应将两端余土压入环刀内;
5.1.6当环刀两端面有少量土不齐平时,可取适量土补齐但不得用力压入改变其原始状态.;
5.1.7 将记录有代表该样品桩号及标高的标签一同装入铝盒内,盖紧盒盖,带回试验室备用。
6.室内检测
6.1检测前准备工作
6.1.1检查天平是否在检定有效周期内,调整水平及零位;
6.1.2打开烘箱电源,将温度控制设置在105℃;
6.1.3将各试样代表的桩号及标高记录在原始记录表上。
6.2检测步骤
6.2.1从铝盒中取出环刀及试样,用天平称取环刀及试样合计质量M1,准确至0.1g,将环刀号及称后质量记录在原始记录表上;
6.2.2取二只铝盒称取其质量m1、m2备用;
6.2.3用修工刀去掉环刀一端面的表面土,从100cm3的环刀中取出15~30g的土置于铝盒中,作测定含水率用,在环刀另一端面重复以上操作,制成二份测定含水率用试样;
6.2.4将环刀中余土全部去除,擦净内外刀壁,称取其质量M2,准确至0.1g,称后质量记录在原始记录表上;
6.2.5分别称取两个铝盒及试样的质量m3及m4准确至0.01g,将铝盒号及称后质量记录在原始记录表上;
6.2.6将铝盒及试样放入烘箱,在105℃的温度下不小于6小时,烘至恒重;
6.2.7将烘干后的铝盒及试样放入干燥器内冷却,冷却后盖好盒盖;
6.2.8称取冷却后的铝盒及试样质量m5 、m6 准确到0.01g记录在原始记录表中。
7.计算
7.1湿密度:                                    计算至0.01g / cm3
式中:    M1 - 环刀+土质量 (g)
    M2 - 环刀质量 (g)
    V  - 环刀容积 (cm3)
ρ - 湿密度 (g / cm3 )
7.2含水率:               
  平均含水率:                      计算至0.1%
式中:    m1 ,m2 ..- 铝盒的质量 (g);
    m3  ,m4 - 烘干前铝盒及试样的质量 (g);
    m5 ,m6  - 烘干后铝盒及试样的质量 (g)
7.3本试验应进行二次平行测定, 二次平行测定方法。
7.4干密度:                                    计算至0.01g / cm3
式中:    ρ - 湿密度 (g / cm3) ;
    - 平均含水率(%);
    ρd - 干密度 (g / cm3)
7.5本试验应进行二次平行测定, 二次平行测定结果之差不得大于0.03 g / cm3取二次平行测定值的平均值计算压实度(压实系数)。
7.6压实度(压实系数)
            压实度                          计算至0.1%
            压实系数                            计算至0.01
式中:    K - 测试点的施工压实度(%);
    - 测试点的施工压实系数;
ρd - 试样的干密度(g / cm3);   
ρc - 由击实试验得到的该试样的最大干密度(g / cm3)
8.检测结束工作
8.1检测完毕应检查天平零位是否正常,关闭烘箱电源,擦净环刀、铝盒等工具;
8.2将检测后的土样撤离试验室,打扫环境。








二、液塑限联合测定
1. 前言
本实验适用于小于0.5mm以及有机质含量不大于样品总质量5%的土的液塑限联合测定。
2. 检测设备
2.1液塑限联合测定仪:圆锥质量76g、锥角300,试样杯内径40mm,高度30mm。
2.1天平:称量200g,感量0.01g。
3. 检测前准备工作:
3.1检查样品、试样置备及预处理
3.1.1检查样品是否均匀是否含有大于0.5mm土粒和杂物,将样品风干,过0.5mm筛去除1杂质;
3.1.2 用天然含水率样品直接检测的,取代表性土250(g),采用风干过筛的样品取200(g);
3.1.3 在样品中取3份(a、b、c)置备试样,各在橡皮板上用不同量的纯水将试样充分调拌均匀膏状、a试样含水量控制在使圆锥入土深度15-17(mm)、b试样含水量控制在使圆锥入工深度7-9(mm)、c试样含水量控制在使圆锥入土深度3-4(mm)),放入调土器,盖上湿布,浸润过夜;
3.1.4 将浸润过夜后的试样再次充分调拌均匀,分数层填入试样杯中,用力压密,使空气逸出,不应留有空隙,对较干的土样应充分搓揉,密实地填入试样杯中,填满后用刀刮成与杯边齐平;
3.1.5 检查联合测定仪圆锥是否完整并抹一薄层凡土林,各运转部件、计时、显示屏是否正常。
4. 检测步骤:
4.1    将试样杯(a试样)放在联合测定仪的升降座上,使圆锥夹刚好接触试样的表面,启动测定仪,观察指示灯和圆锥下沉深度5秒后记录。
4.2    取出试杯,挖去带有凡土林的试样,取剩余部份10g放入铝盒内,测定其含水率(方法同环刀法检测密度中的含水率测定)。
4.3    以4.1及4.2同样的方法完成b试样及c试样的测定。
5.    数据处理
5.1以含水率为横坐标,圆锥入土深度为纵标在双对数坐标纸上绘制关系曲线,a、b、c三个应在一直线上当三点不在一直线上时,通过高含水率的点和其余两点连成二条直线,在下沉2mm 处查得相应的2个含水率。当两个含水率的差值小于2%,应以两点含水率的平均值与高含水率的点连一直线,当两个含水率的差值大于、等于2%时,应重做试验。
5.2在含水率与圆锥下沉深度的关系图上查得下沉深度为17m所对应的含水率为液限,查得下沉深度为10mm所对应的含水率为10mm液限,查得下沉深度为2mm所对应的含水率为塑限,取值以百分数表示,准确至0.1%。
5.3    塑性指数Ip
            Ip = WL-Wp          (计算至0.01)
            WL-液限(%)
            Wp-塑限(%)
5.4 液性指数IL
IL =(W0-Wp)/ Ip    (计算至0.01)
式中:W0-样品天然含水量(%)。
6.    检测中的注意事项:
6.1 a、b、c三个试样含水量应预先通过试验取得,然后按取得的数据进行3.1.3条的操作。
6.2试样制备对联合测定的精度具有头等重要意义,对靠近塑限的那个试样要充分搓揉,紧密地压入试杯中,用土工刀反复压实后刮平。




三、击实试验
1.前言
本实验方法适用于粒径不大于40mm的土用干土法击实以确定该土最大干密度和最佳含水率的试验。
2.    试样用量                                                表2-1
试验方法    击实筒内径(cm)    试样用量(不少于)
干土法
(试样不重复使用)      小筒:10.0(10.2)    至少5个试样,每个3kg
    大筒:15.2    至少5个试样,每个6kg

3.    仪器设备
3.1    标准用击实仪                               
3.2    天平:感量0.01g;                           
3.3    秤:感量1g,称量大于套筒质量加被击实的土的质量;
3.4    筛:孔径40mm、25mm、5mm等;
3.5    金属盘、土铲、修土刀、推土器、碾土器、喷水器、铝盒;
3.6    量筒、分度值1ml;
3.7    烘箱:能准确控制在105-110℃。
4.检测前准备工作
4.1    备齐与试验类别方法相配的设备仪器;
4.2    检查天平是否在检定有效周期内,调整好水平及零位;
4.3    打开烘箱电源,将温度控制设置在105℃。
5.试样的制备
5.1    干土法(土可重复使用)
5.2    将样品用四分法得到大于上表规定的总量,风干或在50℃温度以下烘干,置于橡皮板上,用圆木棍碾散或用碾土器碾散;
5.3    取二份各约20g的土测定风干土的含水率W;
5.4    将碾散的土过筛(筛孔视颗粒大小而定);
5.5 按表规定约3kg土样,称量m0,准确到1g;
5.5    按试样的塑限估计最佳含水率,依此含水率2%的增量和减量(各2个)来确定试样的含水率,共确定5个含水率。
5.6    以下式计算出各试样的需加水量

式中:    mw  - 需加水量 (g)
    w0  -  试样风干后含水率 (%)
    w  .- 以塑限估计的最佳含水率及以此递增或递减的含水率(%)
计算需加水的体积V
V = mw /ρ水  (ml)
式中:    ρ水 - 水的密度g / cm3       
5.7将称好的m0 克质量的土平铺于不吸水的平板上,用喷水器往土样上均匀喷洒V (ml)的水,静置一段时间后,装入塑料袋并密封静置备用,共制备5个不同含水率的试样,静置时间对高液限粘土(wL>50;IP>25)不少于24h,对低液限粘土(wL>50;IP<25)不少于12h。.
6.试样击实
6.1以电动击实仪工作
6.1.1    将击实筒与底座联接好,安装好套筒,检查联接和安装是否可靠;
6.1.2    在筒内壁均匀涂一薄层润滑油;
6.1.3    打开塑料袋,观察袋内试样颜色,含水率均匀的试样颜色应均匀一致;
6.1.4.1市政道路规程                                        表6-1
类别    击实筒容积(cm3)    层数    每层装入量约(g)    每层击数(次)

型    997    3    800-900    27
    2177    3    1700    59

型    997    5    400-500    27
    2177    3    1700    98
                     
6.1.4.2    国标标准                                  表6-2
类别    击实筒容积(cm3)    层数    每层装入量约(g)    每层击数(次)
轻型    947.4    3    700-1500    25
重型    2103.9    5    1400-2000    56
        3    1700    94
6.1.4    用土铲将适量的土装入选定的击实筒中,整平表面并稍加压紧,将击实仪导筒沿击实筒壁垂直置于土样上,将提手提起使击锤提升到导筒最高位,放开提手,使击锤自由落下,沿筒壁移动导筒,第2击点应和前击点相交1/4,依次击实,由外圈向中心移动完成击数,分三层装入的每层击实后应略高于筒高的1/3,分五层装入的每层击实后应略高于筒高的1/5;
6.1.5    第一层击实后取出击实仪,用土工刀拉毛土样层面,然后再装第二层土,重复6.1.5方法进行其余各层土的击实,小筒击实后,试样不应高出筒顶面5mm,大筒不应高出6mm;
6.1.6    用修土刀沿套筒内壁削刮,使试样与套筒脱离后,扭动套筒并取下,将击实筒与底座分离,用修土刀齐筒顶削平试样、削平时避免将高出筒顶的土压入筒内,若击实筒底部试样超出筒外也应修平,擦清筒外壁,称量M1准确至1g。
6.1.7    用推土器将土样推出,在土样中心处取2份15-20(g)试样作含水率测定,将击实筒内壁擦净,称量M2准确至1g;
6.1.8    按6.1.5-6.1.8完成其余4个不同含水率的试样击实。
6.2含水率测定
6.2.1    称取二只铝盒的质量m1、m2,准确至0.01g.;
6.2.2将6.1.8取出的2份土分别置于两只铝盒中,称量m3、m4 准确至0.01g;
6.2.3将铝盒及试样置于烘箱内在105℃下烘至恒重;
6.2.4将烘干的铝盒及试样放入干燥器内冷却后称量m5、m6 准确至0.01g。
6.3计算
6.3.1击实完毕后,对5个试样的所得的数据进行以下计算:
6.3.2    湿密度:                      计算至0.01g / cm3
式中:    M1  - 击实筒加土样的质量 (g)
    M2  - 击实筒质量 (g)
    V  - 所选用击实筒的容积 (cm3)
    ρ - 湿密度 (g / cm3)
6.3.3含水率:       

式中:    m1 ,m2  - 铝盒质量 (g)
    m3 ,m4  - 烘干前铝盒及试样质量 (g)
    m5 ,m6  - 烘干后铝盒及试样质量 (g)
    两个含水率的差值不应大于1%;
平均含水率                                    计算至0.1%
6.3.4干密度 :                          计算至0.01 g / cm3
式中:    Wi - 某点试样的含水率
6.4    最大干密度和最佳含水率的确定.
6.4.1    在直角坐标纸上以含水率为x轴以干密度为y轴,将所计算出的5组数据标出;
6.4.2用曲线板绘出5点的拟合曲线,由该曲线的峰值得到该试样的最大干密度和最佳含水率。
7.  检测结束工作
7.1    击实仪使用完毕后应将各部位擦净,电动击实仪各活动部位应上油;
7.2    检查天平零位是否正常,关闭烘箱电源,擦净各类工具;
7.3    将检测后的土样撤离试验室,打扫环境。

四、匣式直接剪切试验 
土的抗剪强度是土在外力作用下,其一部分土体对于另一部分土体滑动时所具有的抵抗剪切的极限强度。
1. 试验目的
测定土的抗剪强度,提供计算地基强度和稳定用的基本指标(内摩擦角和内聚力)。内摩擦角和内聚力与抗剪强度之间的关系可以用库伦公式表示: 
  S=Ptgφ+c
  式中:S一一抗剪强度,即破坏剪应力(kPa);
p一一正应力阻)a);
φ一一内摩擦角(度);
c--内聚力(kPa)。
2. 试验方法
一般,有固结慢剪、固结快剪和快剪法等。
2.1. 固结慢剪 先使土样在某一级垂直压力作用下,排水固结变形稳定后(粘性土约16小时以上),再以缓慢水平剪应力施加,在施加剪应力过程中,使土样内始终不产生孔隙水压力,如用几个土样在不同垂直压力下进行固结慢剪,将会得到有效应力下的抗剪强度参数Cs和φs值,宜于用匣式直接剪切仪进行.此种试验,但历时较长,因此一般建筑物的设计施工较多采用固结快剪。
2.2 固结快剪  先使土样在某荷重下固结(排水变形稳定),再以较快速度施加剪力,直至剪坏,一般在3-5分钟内完成。由于时间短促,剪力所产生的超静水压力不会转化为粒间的有效应力;这样就使得库仑公式中的S和P都被控制者,如用几个土样在不同的P作用下进行试验,便能求得φcq和Ccq值,这种Ccq、φcq值称为总应力法强度参数。
2.3 快剪法  采用原状土样尽量接近现场情况,然后在较短时间内完成试验,-般在3-5分钟内完成,这种方法将使粒间有效应方维持原状,不受试验时外力的影响,但由于这种粒间有效应力的数值无法求得,所以试验结果只能得出(Ptgφq+cq)的混合值。快速法适用于测定粘性土天然强度,但φq角将会偏大。   
3. 仪器设备
3.1. 剪力仪  应变控制匣式直接剪切仪 (上匣固定,下匣可以水平方向移动;下匣放在钢珠上,用以减少磨擦力),目前广泛采用上、下匣都不固定的应变控制直剪仪,这种装置将避免由于钢珠而导致滚动磨擦力影响;试样面积为30cm2,高度为2cm(少数单位为2.5cm),加压原理采用杠杆传动,杠杆比1:10有些单位用1:12)。   
3.2. 测力计,亦称应变圈(附百分表)根据编号查测力汁校正系数。
3.3. 环刀  内径:6.18cm、高:2.0或2.5cm。
3.4. 其它:切土刀、钢丝锯、滤纸、毛玻璃板、圆玻璃片以及润滑油等。
4. 操作步骤
4.1. 对准上下盒,插入固定销钉,在下盒内放洁净透水石一块及湿滤纸一张。 
4.2. 将盛有试样的环刀,平口向下,刀口向上,对准剪切盒的上盒,在试样上面放湿润滤纸一张及透水石一块,然后将试样用透水石徐徐压入盒底.并顺次加上传压活塞及加压框架。
4.3. 本试验不少于取四个试样,分别施加不同的垂直压力,其大小按试验方法和估计所受计算荷重的范围而定。一般可按0.25、0.5、1、2、3、4、6、8、10……kg/cm2范围内选择施加。加荷时应轻轻加上,但必须注意,如土质松软,为防止被挤出,应分级施加,切不可一次加上。
4.4.如系饱和试样,则在施加垂直压力5分钟后,加水饱和,非饱和土不必加水饱和,但须防止水分蒸发,粘性上试样压缩稳定时间一般为16小时以上。
4.5.试样压缩稳定后,安装应变圈,徐徐转动手轮,使上盒的钢珠恰与应变圈接触,测记测微表(百分表)初读数。
4.6.松开井面两只螺杆,拨去里面销钉,然后通过匀速转动手轮推动下匣,使应变圈受压,观察应变圈上的测微表的转动,它将随下匣的位移而增大,当测微表指针不再前进或指针开始倒退时,认为试样已剪坏(但有时不一定明显地有上述现象,此时建议在位移4mm或6mm附近多读几个读数),记下终读数,停止转轮。
4.7.根据应变曰号码抄录应变圈系数K。
5. 计算及制图
    按下式计算每一试样的抗剪强度:
    S=KR
  式中:S--抗剪强度(kPa);
  K--应变圈系数(kPa/0.01mm);
  R--剪切时应变圈中测微表的初读数与剪坏时终读数之差(0.01mm);
6. 试验记录(表7)
7. 关于试验方法的说明
7.1. 快剪法和固结快剪法适用于渗透系数小于10-6cm/s的粘性土,它们的不同点是,在快剪法中,当垂直压力施加以后,立刻进行水平向剪切;
7.2. 快剪法和固结快剪法取峰值为破坏点时,软土则按70%的峰值为土的强度,但需要加以注明;
7.3. 快剪法最大的垂直压力应控制在土体自重压力左右,结构扰动的土样不宜进行。
8. 关于剪切速率问题的说明
8.1. 对固结快剪和快试法,原则上在3-5分钟内剪切完毕,即每分钟剪切位移0.8-1.0mm左右;
8.2. 固结慢剪亦称排水剪,剪切过程中使土体中孔隙水全部消散,根据不同土性即渗透系数的不同可选择适当剪切速率,有条件的情况下,监察在剪应力作用下试样底部的孔隙水压力有否增长,从而有效地控制剪切速事,但一般情况下对无监测孔隙水压力装置时,对于粘性土可在4-6小时内剪完,即每分钟剪切位移在0.01-0.02mm,这将可获得有效应力下强度参数。
  估算剪切破坏时间
    tf = 50t50
式中tf --达到破坏所经历的时间;
  t50--固结度达到50%的时间。

五、固结实验
固结实验根据工程的需要,可进行如下实验:1、正常慢固结实验;2、快速固结实验;3、先期固结压力确定;4、固结系数的测定。
1.    实验目的
测定土的压缩系数αV、压缩模量ES、体积压缩系数mV、压缩指数CC等
2.    实验方法
1.1正常慢固结试验法,以24小时作为固结稳定标准;
1.2快速固结试验法,砂性土固结时间以1小时,粘性土固结时间以2小时,然后施加下一级荷重,最后一级延长至24小时,并以此等比例综合固结度修正。
1.3先期固结压力试验的最后一级荷重,应大于估算先期固结压力或自重压力的五倍以上。
3.    仪器设备
压缩仪(土样面积30cm2或50cm2,土样高度2cm,固结压力应满足12.5、25.0、50.0、100、200、300、400、600、800、1600、3200、···、kPa等加荷等级,杠杆比为1:10)
测微表(最大量程为10mm、最小分辨率为0.01mm的百分表,也可用位移传感器和数字仪表);
含水量、密度、比重实验设备;
其它(毛玻璃板、圆玻璃片、滤纸、切土刀、钢丝锯和凡士林等)
4.  试验步骤
4.1. 按工程的需要选择50cm2或30cm2切土环刀,环刀内侧涂上一层薄薄的凡士林或硅油,刀口应向下放在原状土或人工制备的扰动土上,切取原状土样时应按天然状态时的垂直方向一致。
4.2. 小心地边压边削,注意避免环刃偏心入土,使整个土样进入环刀并凸出环刀为止。然后用钢丝锯(软土)或用修土刀(较硬的或硬土),将环刀两端余土修平,擦净环刀外壁。
4.3. 测定土样密度,并在余土中取代表性土样测定其含水量,用圆玻璃片将环刀两端盖上,防止水分蒸发。
4.4. 在压缩仪的固结容器内装上切土环刀(刃口向下),土样两端应贴上洁净而湿润的滤纸,再用提环螺丝将导环置于固结容器,然后放上透水石和传压活塞以及定向钢球。
4.5. 将装有土样的固结容器,准确地放在加荷横梁的中心,杠杆加荷式压缩仪应调整杠杆平衡,并为保证试样与容器上下各部件之间接触良好,应施加0.0lkgf/cm2预压荷重。
4.6. 调整百分表10.00mm(0)初读数,当用传感器时,也可调整初读数,按工程需要确定加荷等级和测定项目,以及试验方法。
4.7. 一般工程的加荷等级可采用50、100、200、300、500、…kPa,最后一级荷重应大于土层的自重应力与附加应力之和的200-300kPa,试验方法可用快速试验法并以综合固结度法给予修正。
4.8. 对于特殊要求的试验,如高层建筑,重型厂房,海洋工程,较大的水土建筑和深层地基等,加荷等级可用12.5、25、50、100、200、300、400、600、800、1600、3200、..kPa,必要时可再增加到6400kPa和10000kPa,或12800kPa。当需要作回弹试验时,回弹荷重可由超过自重应力或超过先期固结压力的下一级荷重顺次卸荷至25kPa,然后再顺次加荷,一直加至最后一级荷重为止。试验方法原则以24小时施加一级荷重。卸荷和再加荷的时间,因考虑到固结已经完成稳定较快,因此可采用12小时或更短的时间。如果由于工期紧迫,需缩短试验周期时,也可以选择快速试验法,并进行必要修正。
4.9. 当需要预估建筑物对于时间与变形(沉降)关系时,测定固结系数Cv,或对于层理构造明显的软土,需测定水平向固结系数CH时,应在某一级荷重下测定时间与变形关系。时间读数可按6″(5″)、15″、30″、1′;2′15″、4′5″、9′、12′15″、16′、20'15″、25′、30′15″、36′、42′15″、49′、64′、81′、100′,144′、···,直至24h为止。当测定CH时,须备有水平向固结的径向多孔环,环的内壁与土样之间应贴有滤纸。
4.10. 当试验结束时,应先排除固结容器内水分,然后拆除容器内各部件,取出带环刀的土样,必要时,揩干试样两端和环刀外壁上的水分,测定试验后的密度和含水量。
当土样处于地下水位以下或需要浸水时,在试样受第一级荷重后应注水浸没,而对于非饱和土样,须用湿棉纱或湿海绵覆盖于容器上面,避免水分蒸发。
5.  计算与整理资料
5.1. 按下式计算试样的初始孔隙比:
  e0  =
5.2  按下式计算试样的颗粒(骨架)净高hs及单位沉降量Si:
hs  =      Si  =
5.3 按下式计算某一荷重下压缩稳定后土的孔隙比:
ei  =e0-   
5.4. 按下式计算试样的压缩系数 (MPa-1):

5.5. 按下式计算某一荷重下压缩模量(MPa):

5.6  按下式计算某一荷重下体积压缩系数(MPa-1):
mv=
5.7  计算压缩指数CC和回弹指数CS
CC或CS=
6. 绘制e-P曲线




六、渗透试验
土的渗透为水流通过多孔介质的现象。若土中渗透水流属于层流,则渗透速度与水力坡降成正比。当水力坡降等于1时的渗透速度,称为土的渗透系数。
1. 实验目的
测定砂性土和粘性土的渗透系数以提供估算建筑物地基在排干基坑积水用排水设备,建造土坝时选用的土料考虑到渗水量以及从渗透系数可以计算田结系数,从而验算建筑物地基在荷重作用下固结时间等。
2. 试验方法
  根据不同土质,可分别采用不同方法。砂性土可采用常水头70型试验仪法常水头渗透试验法;粘性土可采用变水头55型渗透仪测定土的渗透系数,并且可以加快试验过程。
3. 70型试验仪法
3.1. 仪器设备
(1)常水头渗透仪(有底金属圆筒、金属网格、测压孔三个、筛布、玻璃测压管(玻璃管内径0.6cm左右,用橡皮管与测压孔相连接,固定于一直立木板上,旁有毫米尺,作测记水头之用,三管的零点应齐平)。
(2)供水瓶(容量5000m1);
(3)量杯(容量500ml),
  (4)温度计(刻度0-50℃,精度0.5℃);
  (5)秒表;
  (6)击棒(木制或金属制);
  (7)其他(橡皮管、管夹、支架等)。
3.2. 操作步骤
3.2.1. 将仪器按图装置妥善后,将调节管7与供水管9连通,使水流入仪器底部、直至齐网格顶面为止,关管夹11。
3.2.2. 秤取一定重量的风干砂土(3~4kg),准确至0.1g并测定其风干含水量。将风干试样分层(每层厚2~3cm)装入金属圆筒的网格上,用击棒轻轻捣实,使达一定厚度,以控制其孔隙比。
如砂样中含粘土颗粒较多,装砂前应在网格上加铺厚约20m的粗砂;作为缓冲层,以防细颗粒被水冲走。
3.2.3. 每层试样装好后,缓缓开启管夹10,使水由仪器底部向上渗入,并使试样逐渐饱和(水流须缓慢,以免冲动土样,且水面不得高出砂面),待饱和后,关上管夹10,同时注意测压管中水面情况及管子弯曲部分有无气泡。     
在管子弯曲部分如有气泡,须挤压连接测压孔及测压管的橡皮管。或用橡皮吸水球在测压管上部连接抽吸,以除去管内空气。   
(4)如此继续分层装砂并饱和、直至试样表面较上测压孔高出3-4cm为止。量试样面至筒顶高度,与网格(或缓冲层顶面)至筒顶高度相减,得试样高度h,爷袒叁苎苎戛乙举确至0.1Z。计算所荤试样昼重身。并在试样上部填厚l~2cm砾石层,放水至水面商出嚆石-面2~3cm时关上管夹10。    ·  .'·--…:…-'--、'
    (5)将迪些迪这挚上笋动,使芸管口高于溢水孔扣关管夹、1a,咖蜘滞9,海海节
'7分开,并置于圆筒上部。开管夹¨。熏水出顶葫注入仪器,、至水再与盔水孔鸥挚瞬瘁盛多余的水由溢水孔溢出,以保持水头恒宅:    ·
    (?)测压管及管路校正无误后?即可开始进行试垒,降低调节管7蝴酌渤垂位午土样
上部,上旦曼些些,使仪器中产兰水头差,水即渗过试祥,经调节管淹趴淘勘嘲瞄懈憾面要保持不变。    1LT';÷熟甄芦·
    (8).当测压管水头稳定后,测定测压管水头,并计算凳压管工、重间的水英建鸳鞠'庄智工、Ⅱ间的水绸。    畔
    (9)开郑孝,用量筒自调节管7接取经一定时间的渗透水量,并重复一次。注繁瓣节管口不可没入水中。    、-    '
    (10)测记进水与出水史的水温,取其平均值i·  、
    (11)降痢丽喑:管口至斌样中部及下咏·1扫黄度处i以朔睐蜘妇谰隔灼涕
10条步骤重复进行试验。
    3.计算
    <妙按了式计算试样的干窖重及孔隙比;
式中
&--风干试样总重(别:
  u.--风干含水量(%):
  召;一试样的干重(g);
  尹d乙-试样干密度(g/C1T['!
  '卜扣试样高度(cm);
  9-J试样断面积(cm:):
  ·d,-试样孔隙比;
  :G--土粒比重。
(2)按下式计算渗透系数:
    ':    K:1;坞厂
式中'Xi乙乙水温为丁时土的渗透系数(cna/的,·

启明星 2009-02-26 16:14
好书     收下了  谢谢  `~~~

yaoguowei 2009-06-13 15:28
看一下。不知道有没有用呀

hillguy 2009-07-22 13:45
谢谢楼主  顶一下

shangzehua 2009-07-29 22:49
正用得着啊,谢谢楼主了

mlxuzheng 2009-09-03 20:41
 

psilence 2009-11-05 21:55
我找你找得好辛苦啊  
现在好了,谢谢楼主!!!!!!!!!!!!

maogang2000 2009-11-25 18:35
谢谢楼主  顶一下   

zzanthouy 2010-02-02 15:29
我想要  谢谢

wxy19820905 2010-02-02 21:33
多谢楼主。

wxy19820905 2010-02-02 21:33
多谢楼主。

geozlw 2010-03-04 11:20
感谢党!!!

mfw900 2010-03-05 21:57
谢谢楼主啊,多谢分享。。。。  

songenrun 2010-04-18 08:54
感谢楼主,过来学习下

fanyiwei 2010-05-09 10:54
正在找,学习学习一下。。

wzjgood163 2010-05-12 10:33
中国地质大学出版的

wzjgood163 2010-05-12 10:33
图书版本。

wzjgood163 2010-05-12 10:34
发个目录。

wzjgood163 2010-05-12 10:34
上传一个目录

wzjgood163 2010-05-12 10:35
发个目录。

cjz06 2010-05-19 18:37
是中航的。

08lin 2010-07-21 20:28
谢谢楼主!太感谢!

anlerli 2010-09-30 16:07
下载学习一下!谢谢楼主

shaodongqiao 2016-12-12 08:22
好资料,下载了


查看完整版本: [-- 锚固工程设计计算与施工.pdf --] [-- top --]



Powered by phpwind v8.7 Code ©2003-2011 phpwind
Time 0.041950 second(s),query:5 Gzip enabled