关于计算岩土力学发展前景的几点看法
沈珠江
(南京水利科学研究院,210029;清华大学水利水电工程系,100084)
提要 岩土工程建设至今还不能脱离经验,但岩土力学的长足进展已使许多工程的设计逐渐摆脱完全依赖经验或半经验的状况,数值计算在未来的岩土工程设计中将会占据越来越重要的位置。本文探讨了计算岩土力学近期可有取得的进展并应加强研究的几个问题。
一、 前言
有限元法在我国普及的初期,许多工程师对数值分析能否解决实际问题曾抱着怀疑的态度,但是不少有识的技术领导还是给予热情的支持。记得上世纪80年代初在组织三峡深水围堰第一轮多单位协作分析计算时,长江水利委员会司兆乐总工曾提出计算分析结果能达到“精确定性、粗略定量”的目标。到今天,虽然不能说这一目标已完全实现,但对相当一部分岩土工程来说,做到这一点已没有困难。当然,岩土工程的设计和施工在今后相当长的时期内仍需要工程师们的经验,但是,在科学技术飞速发展的今天,数值分析技术必将越来越成为人们必须依赖的工具。
同样,在岩土力学研究中,计算也已成为和实验一样不可或缺的手段。在某些特殊情况下数值模拟甚致可以代替实验。而离心模型试验与数值模拟的相互配合,已经成为解决岩土工程问题的一个重大研究方向。
本文将就21世纪岩土工程数值分析的发展前景提出一些看法,基于作者专业知识的局限,重点探讨土力学问题的数值分析问题。
二、 大型工程的数值模型
大型工程不仅投资大,而且工程安全往往对国计民生有重大影响,数值分析已成为论证其安全性的一个重要手段。下面举几个例子。
1、 三峡深水围堰
三峡深水围堰设计阶段曾进行过两轮由众多单位参加的数值分析。第一轮计算在1985~1987期间进行,当时的主要结论是防渗墙顶部的最大位移可能达1m 。墙底嵌入基岩处则可能产生较大的拉应力而断裂。第二轮计算在三峡工程开工后于1993~1995期间进行,此时的设计方案已作了一些改动,特别是吸取了第一阶段的研究成果,把刚性混凝土防渗墙改成塑性混凝土防渗墙,同时围堰主体的风化砂的计算参数也有一定的提高。最后得出墙顶最大位移在36.7~51.0cm之间,防渗墙底部拉应力大大降低,从而基本上是安全的结论。围堰竣工后已经过1998年洪水的考验,实际墙顶最大位移为56.7cm。
2、 鲁布革心墙堆石坝
鲁布革坝是我国改革开放后第一座按现代技术设计的100m级心墙堆石坝。该坝也组织过众多单位参加的两轮计算。第一轮在设计阶段1984—1985期间进行,第二轮则在1987—1988期间进行,此时坝体已大部填筑完成,计算参数根据实际填筑情况重新测定。第一轮计算得出最大沉降在93~161cm之间,第二轮则有所减小,实测值为60.5 cm。
3、 上海外环线越江隧道格构式挡墙
外环线沉管隧道两翼格构式挡墙最大高度达40m以上,开挖过程中的稳定和变形是令人担心的。为此进行了三维有限元分析。此格构墙形状十分复杂,计算中布置了22612个结点。计算得出开挖结束时向江的最大位移为15.3cm,岸上加载且逢低潮位时进一步增大到21.7cm。由于计算参数是根据经验假定的,上述计算结果的可信度不会很高,但在说明安全性大体上可以保证的同时,计算结果显示了格构墙整体呈复杂的扭转变形和混凝土墙中存在明显的拉应力区,为设计时合理布置钢筋提供了依据。
以上几个算例说明,按目前的岩土力学水平,要使计算误差低于10%尚是奢望,但是,如果排除施工条件与原计划相差过远的情况,预测的位移误差控制在50%以内是可以达到的,应力的误差则可能更大一些,但是对工程造成危害的拉应力区的位置则大体上是可信的。
计算岩土力学的研究,分计算方法和计算模型两个方面。为了完成前面提出的任务,当然两个方面都需要研究。由于涉及的往往是强非线性问题和多变量耦合问题,计算结果的精度和稳定性也是必须关心的,所以计算方法的研究也是很重要的。但是应当说,计算岩土力学的核心问题是本构模型。尽管岩土材料的本构模型研究已有30年以上的历史,但至今尚未摆脱传统弹塑性理论的框框,建立起符合岩土材料自身特点的本构模型。岩土力学界在这一问题上正在取得共识,本构模型研究取得突破的前景已经在望。相信在今后20~30年内,计算岩土力学一定会取得令人瞩目的进展。