南京林业大学GDS应用案例——温控应力路径三轴试验系统
提出问题 王海波老师拥有多年的岩土试验教学和实地试验经验,曾经留学澳洲,对国内外的岩土行业认识颇深,且具有很独到的见解。
(参见:扁铲侧胀试验应力路径的三轴模拟分析,南京林业大学学报(自然科学版)2011, 35(4): 121-125;WPS-FA-EPS填料导热系数试验研,2010, 32(8), 1297-1302.岩土工程学报等).
我们都知道通过土体的应力路径试验,可以模拟土体实际的应力历史,全面研究应力变化过程对土的力学性质的影响。此方面的研究在国内外逐渐增多,基于Bishop-wesley架构的应力路径三轴被大家广泛接受,但是土体的应力变化通常伴随环境的变化。
环境中的变化因素包括湿度、温度以及化学物质介入。实际环境中温度的变化是最常见的变化因子,很多工况中温度变化高达几十度。这样的变化同时伴随应力变化,将会对土的力学性质产生什么影响? 不同的土在同样的变化条件下会有什么区别? 这是需要进行研究的问题。
解决方案 为了研究上述问题,基于南京林业大学已经购买的GDS应力路径三轴进行改造,以适合试验。原设备采用Bishop & Wesley三轴压力室,试样直径38/50mm:
-最大围压1700kPa
-最大轴荷载7kN
-±25mm位移传感器
-2Mpa孔隙水压力传感器 -八通道数据采集装置
-反压和围压压力体积控制器 并配备多个软件模块用于顺利进行试验。
在此设备基础上,对压力室进行改造,压力室内安装上可以循环冷液的铜管,并加入可以实际监测温度的传感器。温度的变化通过另外购置的水浴来控制,试样的实际温度通过置入的温度传感器监测并采集传输到GDSLAB软件中。
水浴根据实时的温度变化来伺服监控温度。 试验过程中通过GDS软件控制应力或应变试验,通过水浴进行温度的控制,所有的数据包括温度数据都可以通过软件记录下来。
图 1. GDS的应力路径三轴仪
试验结果 应力路径试验在加入温度环境因素后,试验的形式和维度都发生了变化。此项改造,扩展了应力路径三轴仪的试验范围。 试验进行到现在,研究了部分土体的特定试验过程,获得了一些试验成果。 我们对于改造的每个环节都积累了丰富的经验,过程中经过探求、改造、失败、再探求、再改造的循环过程最终达到成功,不正是体验了科研的精神和含义。 另外本设备曾经升级过非饱和土的相关硬件,未来的研究方向可能会加入土类材料的这一状态,以获得与实际工况更相符合的结果。
结论和感谢 设备改装过程中得到了GDS公司和欧美大地公司工作人员的大力支持。工作人员会根据自己的经验为设备的改造提供参考。另外工作人员在传感器的挑选的和适配时,给出了很专业的建议,使得传感器与设备无缝连接。温控改造过程中对于软件方面的修改适配,工作人员也给予了很大的帮助。
原设备应力路径三轴试验系统操作简单,扩展性好。支持人员具有专业水平和较高的素养,未来我们会更倾向于跟GDS公司再次合。作
图 2. 温控改造后的应力路径三轴
目前南京林业大学土木工程试验中心除了拥有以上设备外,还配备了GDS的研究型动态三轴试验系统,GDS扭剪共振试验系统,GDS中压力自动三轴系统,GDS固结试验系统和弯曲元试验系统等,正持续为岩土科研和现场项目提供科学和技术支持。
参考文献王效宾,杨平,王海波,戴海明. 冻融作用对黏土力学性能影响的试验研究[J]. 岩土工程学报. 2009(011): 1768-1772(EI收录)王海波,杨平,何忠意,孔隙率与饱和度对粉土导热特性的影响[ (南京林业大学学报(自然科学版)). 2012, 36(2): 42-46(BY:CD)