论坛首页    职业区    学术与写作    工程技术区    软件区    资料区    商务合作区    社区办公室
 您好! 欢迎 登录注册 最新帖子 邀请注册 活动聚焦 统计排行 社区服务 帮助
 
  • 帖子
  • 日志
  • 用户
  • 版块
  • 群组
帖子
  • 4877阅读
  • 3回复

[转载]Determination of Bearing Capacity of Open-Ended Piles in Sands [复制链接]

上一主题 下一主题
离线yuyangjiao
 

发帖
75
土币
5
威望
128
原创币
0
只看楼主 正序阅读 使用道具 楼主  发表于: 2009-03-19
Determination of Bearing Capacity of Open-Ended Piles \U_@S.  
in Sand W,u:gzmhw  
Kyuho Paik1 and Rodrigo Salgado, M.ASCE2 ]M3yLYK/P  
Abstract: The bearing capacity of open-ended piles is affected by the degree of soil plugging, which is quantified by the incremental W+* V)tf  
filling ratio ~IFR!. There is not at present a design criterion for open-ended piles that explicitly considers the effect of IFR on pile load ,zc(t<|-y  
capacity. In order to investigate this effect, model pile load tests were conducted on instrumented open-ended piles using a calibration j<$2hiI/?&  
chamber. The results of these tests show that the IFR increases with increasing relative density and increasing horizontal stress. It can also 2an f$^[  
be seen that the IFR increases linearly with the plug length ratio ~PLR! and can be estimated from the PLR. The unit base and shaft ;*J  
resistances increase with decreasing IFR. Based on the results of the model pile tests, new empirical relations for plug load capacity, Wp,R ^d  
annulus load capacity, and shaft load capacity of open-ended piles are proposed. The proposed relations are applied to a full-scale pile load ,,r>,Xq 6  
test performed by the authors. In this load test, the pile was fully instrumented, and the IFR was continuously measured during pile 5zJq9\)d+  
driving. A comparison between predicted and measured load capacities shows that the recommended relations produce satisfactory :6dxtl/{b:  
predictions. FI.\%x  
DOI: 10.1061/~ASCE!1090-0241~2003!129:1~46! *1"+%Z^  
CE Database keywords: Bearing capacity; Pile load tests; Sand. Vvo 7C!$z  
Introduction JXx wr)i  
When an open-ended pile is driven into the ground, a soil plug |j|rS5  
may develop within the pile during driving, which may prevent or <3 uNl  
partially restrict additional soil from entering the pile. It is known gG uO  
that the driving resistance and the bearing capacity of open-ended d-%hjy3N  
piles are governed to a large extent by this plugging effect. P<-@h1p,  
Many design criteria for open-ended piles, based on field tests, +[ZY:ZQ  
chamber tests or analytical methods, have been suggested @e.g., (k P9hcV  
Klos and Tejchman 1977; Nishida et al. 1985; American Petroleum ^z\cyT%7t  
Institute ~API! 1991; Randolph et al. 1991; Jardine et al. kxCSs7J/  
1998#. For example, in the case of API RP2A ~1991!, which is \7_y%HR  
generally used for offshore foundation design, the bearing capacity n"8Yv~v*2j  
of an open-ended pile can only be estimated for either the fully SrJE_~i  
coring mode or the fully plugged mode of penetration. In practice, L},_.$I?  
most open-ended piles are driven into sands in a partially plugged n+p }\msH  
mode. Stefanoff and Boshinov ~1977! suggested the use of onedimensional p4QU9DF  
plug analysis, in which the soil plug is treated as a ~M$Wd2Th  
series of horizontal thin discs and the force equilibrium condition iDD$pd,e\  
is applied to each disc, to calculate plug capacity of an openended >Gu M]qn  
pile. @9:uqsL  
There have been modifications of one-dimensional plug analysis 7$#u  
to improve predictive accuracy, such as the introduction of the 4e  
concept of the wedged soil plug ~Murff et al. 1990; O’Neill and +ai< q>+  
Raines 1991; Randolph et al. 1991!. Many test results show that DfB7*+x{  
the soil plug can be divided into a wedged plug zone and an g{LP7 D;6  
unwedged plug zone. While the wedged plug zone transfers load R!1p^~/  
to the soil plug, the unwedged plug zone transfers no load but #;S*V"  
provides a surcharge pressure on top of the wedged plug zone. 4z)]@:`}z  
However, it is not easy to apply the one-dimensional analysis to 1mJ Hued=6  
practical cases, because of the sensitivity of the method to the h`KU\X ) A  
lateral earth pressure coefficient, which is not easily estimated m+9#5a-  
~Brucy et al. 1991; Leong and Randolph 1991!. De Nicola and 0 "#HJA44  
Randolph ~1997! addressed this by proposing a profile of the 13f)&#, F  
lateral earth pressure coefficient K along the soil plug length. ('~LMu_  
An alternative design method can be based on the incremental 2zpr~cB=  
filling ratio ~IFR!. The degree of soil plugging is adequately quantified `u\n0=go  
using the IFR ~Paikowsky et al. 1989; Paik and Lee 1993! <N @Gu!N8  
defined as P2Y^d#jO  
IFR5 vSh`&w^*  
DL TZ`SZDc7_  
DD AwN!;t_0+N  
3100~%! (1) V8(-  
where DL5increment of soil plug length ~L! corresponding to a =H~j,K  
small increment DD of pile penetration depth D ~see Fig. 1!. The Ca\6vR  
fully plugged and fully coring modes correspond to IFR50 and V.Mry`9-  
100%, respectively. A value of IFR between 0 and 100% means K^[?O{x^B  
that the pile is partially plugged. A series of model pile tests, MQ4KdqgP  
using a calibration chamber, were conducted on model openended I:.s_8mH}  
piles instrumented with strain gauges in order to investigate ?Ob3tUz2  
the effect of IFR on the two components of bearing capacity: base zreU')a  
load capacity and shaft load capacity. Based on the calibration j.YA 2mr  
chamber test results, empirical relationships between the IFR and 0$njMnB2l  
the components of pile load capacity are proposed. In order to vv7I_nK?  
verify the accuracy of predictions made using the two empirical hOeRd#AQK  
relationships, a full-scale static pile load test was conducted on a 8ipez/  
fully instrumented open-ended pile driven into dense sand. The ,0k;!YK  
predicted pile load capacities are compared with the capacities n:X y6H  
measured in the pile load test. +h$ 9\  
1Associate Professor, Dept. of Civil Engineering, Kwandong Univ., cZ06Kx..  
Kangwon-do 215-800, South Korea ~corresponding author!. E-mail: e# bn#  
pkh@kwandong.ac.kr d'2A,B~_*  
2Associate Professor, School of Civil Engineering, Purdue Univ., West y)*RV;^  
Lafayette, IN 47907-1284. E-mail: rodrigo@ecn.purdue.edu 1Z;iV<d  
Note. Discussion open until June 1, 2003. Separate discussions must 7 d vnupLh  
be submitted for individual papers. To extend the closing date by one #Dac~>a'  
month, a written request must be filed with the ASCE Managing Editor. Z ]ONh  
The manuscript for this paper was submitted for review and possible j39wA~ K  
publication on July 23, 2001; approved on May 23, 2002. This paper is #1[u (<AS  
part of the Journal of Geotechnical and Geoenvironmental Engineering, He)%S]RLk  
Vol. 129, No. 1, January 1, 2003. ©ASCE, ISSN 1090-0241/2003/1- ME dWLFf  
46–57/$18.00. Ls%MGs9PI  
46 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING / JANUARY 2003 =#\:}@J5I  
Soil Sample Preparation y)pk6d   
Soil Properties he4(hX^  
Han river sand, a subangular quartz sand, with D1050.17mm and $u.z*b_yy  
D5050.34 mm, was used for all the calibration chamber model &FD>&WRV  
pile tests. The test sand is classified as poorly graded ~SP! in the |^aKs#va  
Unified Soil Classification System, so the maximum dry density 7 3m1  
of the sand is near the low end of the typical range for sands. The "}!G!k:  
maximum and minimum dry unit weights of the sand were 15.89 l ,8##7  
and 13.04 kN/m3, respectively. Vc2`b3"Br  
A series of laboratory tests were conducted to characterize the nK,w]{<wG!  
sand. The results from these tests are summarized in Table 1. The SdWV3  
internal friction angle of the sand and the interface friction angle l\mPHA23  
between the sand and steel were measured from direct shear tests HDLk>_N_s,  
under normal stresses of 40–240 kPa. The peak friction angles of +0~YP*I`/  
the sand with relative densities of 23, 56, and 90% were 34.8, ,)XLq8  
38.2, and 43.4°, respectively, and the critical-state friction angle weQ_*<5%  
was 33.7°. The peak interface friction angles between the pile and (?c-iKGc  
the sand were 17.0, 17.5, and 18.4° for DR523, 56, and 90%, 2?5>o!C  
respectively, and the critical-state interface friction angle was N0lC0 N?_J  
16.7°. This angle is lower than commonly reported values because :0ep( <|;  
the test pile was made of stainless steel pipe with a very . ^u,.  
smooth surface. ;]iRk  
Calibration Chamber and Sample Preparation .h[:xYm  
All model pile tests were conducted in soil samples prepared q@&6#B  
within a calibration chamber with a diameter of 775 and a height d@^ZSy>L2  
of 1250 mm. In order to simulate various field stress conditions, Jv i#)  
two rubber membranes, which can be controlled independently, zTp"AuNHN  
were installed on the bottom and inside the lateral walls of the KP"+e:a%  
calibration chamber. The consolidation pressure applied to the SIllU  
two rubber membranes was maintained constant by a regulator \8 ":]EU  
panel throughout each pile test. nEfK53i_  
The soil samples were prepared by the raining method with a 0erNc'e  
constant fall height. The falling soil particles passed through a Nl/dX-I  
sand diffuser composed of No. 8 and No. 10 sieves in order to phK/   
control flow uniformity and fall velocity. The soil samples had ZoeD:xnh[  
DR523, 56, and 90%. After sample preparation, the samples I*&8^ r:A  
were consolidated to the desired stress state during approximately :Al!1BJQ  
30 h by compressed air transferred to the rubber membranes. N;d] 14|  
Measurements made in calibration chambers are subject to y9;Yiv r)  
chamber size effects. Many researchers have attempted to estimate 2/f}S?@   
the chamber size needed for boundary effects on pile bearing s.#`&Sd>  
capacity or cone resistance to become negligible. Parkin and GVz6-T~\>  
Lunne ~1982! suggested 50 times the cone diameter as the minimum ~[ F`"  
chamber diameter for chamber size effect on cone penetration 7P T{lT  
resistance to become acceptably small. Salgado et al. ~1998!, @L`jk+Y0vF  
based on cavity expansion analyses, found that 100 times the cone ,I9bNO,%JK  
diameter was the minimum chamber diameter to reduce chamber 7nSxi+6e  
size effects on cone resistance to negligible levels. Diameters of 7,MR*TO,  
the chamber and test pile used in this study are 775 and 42.7 mm, jylD6IT  
respectively. The lateral and bottom boundaries are located at a /efUjkP  
distance equal to 18.2 pile radii from the pile axis and 23.0 pile "|NI]Kv  
radii below the maximum depth reached by the pile base, respectively. YQ} o?Q$z  
Considering the results of the research on chamber size Q/?$x*\>  
effects mentioned above, the size of the chamber used in this ^pS~Z~[d/  
study is not sufficiently large for chamber size effects on pile }b}m3i1  
bearing capacity to be neglected. The flexible boundary causes gr{ DWCK  
lower radial stresses than those that would exist in the field. Accordingly, gIfh3D=yX  
the chamber tests done as part of this study produce ~,Qp^"rlW  
lower pile load capacities than those that would be observed in FwK] $4*  
the field. A correction for chamber size effects is then necessary. 6b,V;#Anj  
It is discussed in a later section. @CoIaUVP  
Model Piles and Test Program yu|>t4#GT  
Model Pile iCoX& "lb  
An open-ended pile is generally driven into sands in a partially cl1T8vFM  
plugged mode, and its bearing capacity is composed of plug load =D(j)<9$A  
capacity, annulus load capacity, and shaft load capacity. In order xo)P?-  
to separate pile load capacity into its components, an instrumented h1RSVp+?n  
double-walled pile was used in the testing. A schematic hoP]9&<T  
diagram of the pile is shown in Fig. 2. The model pile was made ~Ei<Z`3}7"  
of two very smooth stainless steel pipes with different diameters. VUc%4U{Cti  
It had an outside diameter of 42.7 mm, inside diameter of 36.5 @WhHUd4s  
mm, and length of 908 mm. ,6/V" kqIP  
The wall thickness of the test piles used in this study is larger qK+5NF|  
than those of piles typically used in practice. Szechy ~1959! y5r4&~04  
showed that the degree of soil plugging and bearing capacity of hP h-+Hb  
two piles with different wall thicknesses do not differ in a significant "Q<MS'a  
way ~with bearing capacity increasing only slightly with increasing U:`Kss`  
wall thickness!; only driving resistance depends significantly =|=(l)8  
upon the wall thickness. So the load capacity of the test (:_$5&i7  
piles reported in this paper are probably larger, but only slightly dr(*T  
so, than what would be observed in the field. e.>P8C<&  
Eighteen strain gauges were attached to the outside surface of 4*L_)z&4;  
the inner pipe at nine different levels in order to measure the base (Z*!#}z`  
load capacity ~summation of plug and annulus load capacities! +vH4MwG$.&  
Fig. 1. Definition of incremental filling ratio and plug length ratio 1oS/`)  
Table 1. Soil Properties of Test Sand PCvWS.{  
Property Value 3]>|  i  
Coefficient of uniformity Cu 2.21 b}f~il  
Coefficient of gradation Cc 1.23 ^~dWU>  
Maximum void ratio emax 0.986 |4JEU3\$  
Minimum void ratio emin 0.629 ,}PgOJZ  
Minimum dry density gd,min 13.04 kN/m3 XSDpRo  
Maximum dry density gd,max 15.89 kN/m3 _#niyW+?~  
Specific gravity Gs 2.64 oRFq @g  
Peak friction angle fpeak 34.8–43.4° .H|-_~Yx|  
Critical-state friction angle fc 33.7° #R"*c hLV  
Peak interface friction angle d 17.0–18.4° x Ar\gu  
Critical-state interface friction angle dc 16.7° UZMd~|  
JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING / JANUARY 2003 / 47 = &]L00u.  
from the load transfer curve along the inner pipe. Two strain n]9$:aLZ  
gauges were also attached to the outside surface of the outer pipe %{|pj +  
in order to measure shaft load capacity. A gap of 4 mm between $X6h|?3U,  
the outer pipe and the pile toe, which was sealed with silicone, Ie_wHcM<  
prevented the base load from being transferred to the outer pipe. tYS06P^<  
The outer pipe, therefore, experienced only the shaft load. Q?vlfZR`8  
Many researchers have relied on linear extrapolation to separate Z~CjA%l  
the base load capacity into plug and annulus capacities ~Paik $]d^-{|  
and Lee 1993; Choi and O’Neill 1997; Lehane and Gavin 2001!. khe}*y  
Linear extrapolation would apply strictly only if the inside unit XZ7Lk)IR  
friction between the pile and soil plug were constant between the "[J^YKoF  
second lowest strain gauge and the pile base, as shown in Fig. 3. nKY6[|!#  
In reality, the inside unit friction between the soil plug and the test =  [E  
pile increases dramatically near the pile base. Use of linear extrapolation, f8~_E  
therefore, leads to an overestimation of annular resistance. ,prf;|e?  
This overestimation increases as the distance between the #a6iuO0I  
lowest strain gauge and the pile base increases. In part to avoid ?  t|[?  
this uncertainty, in this paper we use the base load capacity to ! mHO$bQ"  
analyze the test results instead of the plug and annulus load capacities >A= f 1DF  
separately. The base load capacity of the test pile was X8|,   
obtained from the upper strain gauges located on the inner pipe, 0S"MC9beg  
for which the measured vertical loads reached a limit value ~Fig. G[=c Ss,  
3!. Dtk=[;"k2a  
Test Program t_^4`dW`  
Seven model pile tests were performed in dry soil samples with /x hKd]Q  
three different relative densities and five different stress states. CTb%(<r  
Each test is identified by a symbol with three letters ~H high, M L,\Iasv  
medium, L low!, signifying the levels of the relative density, vertical @]j1:PN-  
and horizontal stresses of the sample, respectively. A summary { FkF  
of all model pile tests is presented in Table 2. Five model iTwm3V P  
pile tests were conducted in dense samples with DR590% and Y4-t7UlS;  
five different stress states. Two model pile tests were conducted in d=(mw_-?  
loose and medium samples consolidated to a vertical stress of *w&e\i|7  
98.1 kPa and horizontal stress of 39.2 kPa. The model piles were qPNR`%}Q  
driven by a 39.2 N hammer falling from a height of 500 mm. 9w"*y#_  
During pile driving, the soil plug length and the pile penetration j%kncGS  
depth were measured at about 40 mm intervals, corresponding to dN q$}  
94% of the pile diameter, in order to calculate the IFR. The & 21%zPm  
change in soil plug length during pile driving was measured using LVGe]lD  
a ruler introduced through an opening at the top plate of the pile 2G7Wi!J  
~see Fig. 2!. In order to measure the soil plug length, driving aN?zmkPpov  
operations were suspended for no more than a minute each time. [JiH\+XLPs  
Static pile load tests were performed when the pile base was )`:UP~)H  
located at depths of 250, 420, 590, and 760 mm. The pile load  ?9/G[[(  
tests were continued until the pile settlement reached about 19 :;}P*T*PU  
mm ~44% of the pile diameter!, at which point all the test piles 4s- !7  
had reached a plunging limit state ~Fig. 4!. The ultimate load of la!~\wpa  
each test pile is defined as the load at a settlement of 4.27 mm, G{}VPcrbC  
corresponding to 10% of the pile diameter. The total load applied RZLq]8pM  
to the pile head was measured by a load cell, and settlement of the P:c w|Q  
pile head was measured by two dial gauges. Details of the model ^q5#ihM  
pile, sample preparation, and test program have been described by HJ"GnZp<  
Paik and Lee ~1993!. C dn J&N{  
Model Pile Test Results +7Gwg  
Pile Drivability pBHRa?Y5  
Fig. 5~a! shows pile penetration depth versus hammer blow count 01]f2.5  
for all the test piles. As shown in the figure, the hammer blow _6Sp QW  
count per unit length of penetration increases as pile penetration j#|ZP-=1_  
depth increases, since the penetration resistances acting on the |Cv!,]9:r  
base and shaft of the piles during driving generally increase with @d'j zs  
Fig. 2. Schematic of model pile XFl 6M~ c  
Fig. 3. Determination of plug and annulus loads I7onX,U+  
Table 2. Summary of Model Pile Test Program {: /}NpA$  
Test ?,z}%p  
indicator oH@78D0A  
Initial IGl9 g_18  
relative KlEpzJ98  
density Jy)/%p~  
~%! sJZ iI}Xc  
Initial 6nn *]|7  
vertical YK_ 7ip.a[  
stress =_CzH(=f#  
~kPa! Mx}gN:Wt  
Initial 9hl_|r~%*  
horizontal ,1`z"7\W  
stress 10&8-p1/mc  
~kPa! $xsd~L &  
Initial j 7B!h|  
earth W/N7vAx X  
pressure mH(:?_KrS-  
coefficient KI.unP%  
HLL 90 39.2 39.2 1.0 0GLM(JmK  
HML 90 68.6 39.2 0.6 l1I#QB@5n  
HHL 90 98.1 39.2 0.4 @7 }W=HB  
HHM 90 98.1 68.6 0.7 PCA4k.,T  
HHH 90 98.1 98.1 1.0 *~`(RV  
MHL 56 98.1 39.2 0.4 :FF=a3/"6  
LHL 23 98.1 39.2 0.4 Wwo0%<2y  
48 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING / JANUARY 2003 u8^lB7!e/  
penetration depth. The vertical stress applied to the soil sample T{ "(\X$  
had little effect on the cumulative blow count. However, the blow +@UV?"d  
count necessary to drive the pile to a certain depth decreased @Qe0! (_=  
rapidly with decreasing horizontal stress. It is also seen in Fig. (7Qo  
5~a! that the blow count necessary for driving the pile to some :RYTL'hes  
required depth increases with increasing relative density. 4H/OBR  
Soil Plugging _1^'(5f$  
The degree of soil plugging in an open-ended pile affects pile /Oono6j  
behavior significantly. The IFR is a good indicator of the degree z:O8Ls^\T  
of soil plugging. During the model pile tests, the IFR was measured 4-w{BZuS  
at increments of 40 mm of penetration. The change of the qs6aB0ln  
soil plug length with pile penetration depth is plotted in Fig. 5~b!. f$( e\+ +  
It is seen in the figure that the soil plug length developed during 4i bc  
pile driving increases as the horizontal stress of the soil sample K3C<{#r  
increases for the same relative density, and as the relative density x-c"%Z|  
increases for the same stress. It can also be seen that every test M|-)GvR$J  
pile, during static load testing, advances in fully plugged mode,  _F{C\}  
irrespective of the initial soil condition and the degree of soil 2%1hdA<  
plugging during pile driving. The static load tests appear as short a*;b^Ze`v  
vertical lines in Fig. 5~b!, meaning that penetration depth increases *hrd5na  
while soil plug length remains unchanged. 1YA% -~  
Fig. 6 shows changes of IFR with soil state ~relative density, Xj*Wu_  
vertical stress, and horizontal stress!. Fig. 6~a! shows IFR versus %y@AA>x!  
DR for tests with sv 8 598.1 kPa and K050.4. Fig. 6~b! shows IFR :&Nbw  
versus sv 8 for tests with DR590% and sh8539.2 kPa. Fig. 6~c! 9uY'E'm*  
shows IFR versus sh8 for DR590% and sv 8 598.1 kPa. It is observed $>gFf}#C  
that the IFR increases markedly with increasing relative zDp2g)  
density and with increasing horizontal stress. These changes in J,G lIv.A  
IFR reflect the decreasing amount of compaction of the soil plug 6zkaOA46V  
during pile driving as the relative density and stress level in the }G=M2V<L  
soil increase. However, the IFR is relatively insensitive to e!`i3KYn"  
changes in the vertical stress applied to the soil sample. This C~[,z.FvO  
means that the IFR of an open-ended pile would be higher for an ^aQ"E9  
overconsolidated sand than for a normally consolidated sand at K,]=6 Rj  
the same DR and sv 8 . n%-0V>  
Fig. 7 shows IFR versus plug length ratio ~PLR! for the chamber g`^x@rj`E  
test results and for the test results of Szechy ~1959!; Klos and l%ZhA=TKQ  
Tejchman ~1977!; Brucy et al. ~1991!; and Paik et al. ~2002!. The l, wp4 Ll  
PLR is defined as the ratio of soil plug length to pile penetration wBzC5T%,  
as ~see Fig. 1! ToQ"Iy?  
PLR5 D$N /FJ8|G  
L {*KEP  
D *I'yH8Fcn  
(2) !W0v >p  
In Fig. 7~b!, the data from Paik et al. ~2002! were obtained from 8fb'yjIC  
a full-scale pile with diameter of 356 mm driven into submerged pp2~Meg  
dense sands. The remaining data were obtained from model pile tgaO!{9I?  
tests using piles with various diameters driven into dry sand ranging x"(KBEK~  
from loose to medium dense ~the diameter of each test pile is _m>b2I?  
indicated in the figure!. Fig. 7~a! shows that IFR, measured at the g>sSS8R O  
final penetration depth, increases linearly with increasing PLR. % nIf)/2g  
Fig. 4. Load–settlement curves from model pile load tests zL it  
Fig. 5. Driving test results: ~a! hammer blow count, and ~b! soil plug r>\bW)e  
length 7rA;3?p)  
JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING / JANUARY 2003 / 49 *H122njH+T  
The relationship between PLR and IFR for the calibration chamber SaCh 7 ^  
tests can be expressed as follows:  IB<d  
IFR~%!5109•PLR222 (3) :KN-F86i  
This equation slightly underestimates the IFR for PLR values jal-9NV)!  
greater than 0.8 and slightly overestimates it for PLR values 9kojLqCT  
lower than 0.7, as shown in Fig. 7~b!. In general, it is known that q=G+Tocv  
the IFR is a better indicator of the degree of soil plugging than the &{RDM~  
PLR ~Paikowsky et al. 1989; Paik and Lee 1993!. In the field, zJXplvaL;  
however, it is easier to measure the PLR than the IFR. Eq. ~3! can {[(h[MW#  
be used to estimate the IFR from the PLR, when only the PLR is Tr|JYLwF  
measured in the field. P$sxr  
Base and Shaft Load Capacities &R siVBA  
The ultimate unit base resistance qb,c measured in the calibration V:27)]q  
chamber is plotted versus relative density ~for sv 8 598.1 kPa and nie%eC&U  
K050.4), versus vertical stress ~for DR590% and sh8 ]d`VT)~vje  
539.2 kPa) and versus horizontal stress ~for DR590% and bfO=;S]b!  
Fig. 6. Incremental filling ratio versus ~a! relative density for sv8 |'.  
598.1 kPa and K050.4; ~b! vertical stress for DR590% and sh8 XM}hUJJW  
539.2 kPa; and ~c! horizontal stress for DR590% and sv8 W`&hp6Jq  
598.1 kPa TKjFp%  
Fig. 7. Plug length ratio versus incremental filling ratio ~a! for chamber yBRC*0+Vy  
test results, and ~b! for other test results rbQR,Nf2x  
50 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING / JANUARY 2003 8] ikygt"  
sv 8 598.1 kPa) in Fig. 8. It is apparent that the ultimate unit base ~v83pu1!2s  
resistance increases significantly with increasing relative density +O5hH8<&b  
and increasing horizontal stress, but is relatively insensitive to , dp0;nkr  
vertical stress. This is consistent with experimental results of Nluoqo ac  
Baldi et al. ~1981!; Houlsby and Hitchman ~1988!; and Vipulanandan fX)# =c|5  
et al. ~1989!, which showed that cone resistance was a 1sCR4L:+  
function of lateral effective stress. {PmZ9  
Fig. 9 shows the ultimate unit base resistance, normalized with vI]N^j2%  
respect to the horizontal stress, versus IFR for different relative MPk5^ua:  
densities, and the ultimate unit base resistance versus IFR for I0a<%;JJW  
dense sand. It can be seen in Figs. 9~a and b! that the ultimate unit kN>!2UfNS  
base resistance of open-ended piles increases with decreasing IFR {e5= &A  
and that the rate of change of ultimate unit base resistance with N<-Gk6`C/  
IFR increases with DR . It is also seen that the ultimate unit base fAmz4  
resistance increases with relative density at constant IFR. oE~Bq/p  
Fig. 10 shows the ultimate unit shaft resistance f so,c measured :L;a:xSpn=  
in the calibration chamber versus relative density, vertical stress, s{" 2L{,$  
and horizontal stress. Similarly to what is observed for ultimate pmilrZmm]  
unit base resistance, the ultimate unit shaft resistance of an open- qFNes)_r  
Fig. 8. Unit base resistance versus ~a! relative density for sv8 _2nx^E(pd  
598.1 kPa and K050.4; ~b! vertical stress for DR590% and sh8 @I*{f  
539.2 kPa; and ~c! horizontal stress for DR590% and sv8 BB'OCN  
598.1 kPa ]:f%l mEy  
Fig. 9. Normalized unit base resistance versus incremental filling &=Wlaa/,&  
ratio ~a! for sv8598.1 kPa and K050.4, and ~b! for DR590% m6djeOl  
JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING / JANUARY 2003 / 51 K@#L)VT!  
ended pile increases with both relative density and horizontal f9;(C4+  
stress, but is insensitive to the vertical stress. It is clear from Fig. ERt{H3eCcJ  
10~c! that the ultimate unit shaft resistance is linearly related to =ruao'A  
the horizontal stress. The ultimate base and shaft load capacities ^H' \"9;7  
of the test piles are listed in Table 3. Faf&U%]*`  
Correction of Chamber Test Results for Chamber : c[L3rJl  
Size Effects ;\l,5EG  
Adjustment of Pile Diameter e$pV%5=  
Pile load capacities measured in a calibration chamber are different e]tDy0@  
from those measured in the field due to chamber size effects. BSMwdr  
In order to use the calibration chamber test results for computation `p7=t)5k  
of pile load capacity in the field, corrections for chamber size N36_C;K-z  
effects were performed for every chamber test. In the estimation eIo7F m  
of chamber size effects, the ratio of the chamber to the equivalent iyp=lLk  
diameter of the model pile used in the tests is required. The veRm2 LSP  
equivalent diameter of an open-ended pile is the diameter that a ,=:D   
pile with solid cross-section would have to have in order to displace (khL-F  
the same soil volume during installation as the open-ended @]#1(9P  
pile. The equivalent diameter of open-ended piles varies with the #V}IvQl|  
degree of soil plugging, because the soil displacement around the ujucZ9}yd  
pile due to pile driving increases with decreasing IFR ~Randolph Y#3c }qb  
et al. 1979!. For example, if a pile is driven in fully coring mode, .}`Ix'.  
the equivalent pile diameter is calculated from an equivalent area V/;B3t~f  
equal to the annular area. If a pile is fully plugged during driving, _7)n(1h[3b  
the gross cross-sectional area of the pile should be used. For piles p6WX9\qS(  
driven in a partially plugged mode, the equivalent pile diameter d'I"jZ  
can be determined through interpolation with respect to the IFR. TW>WHCAm  
This is summarized, mathematically, as follows: Y5d\d\e/  
If IFR>100%, dp5A~d0 2 2di 65m"J'  
2! (4a) EU/8=JA1  
If IFR50%, dp5d0 (4b) \B 7tX  
If 0%<IFR<100%, u?{H}V  
dp5d02@d02A~d0 2 2di pU7lnS[  
2!#• IFR~%! &yol_%C  
100 tdaL/rRe  
(4c) BV+ Bk+  
in which dp5equivalent pile diameter; d05outer pile diameter; n\.Vqe  
and di5inner pile diameter. + +#5  
Considering the pile driving mechanism of an open-ended pile, t!\tF[9e  
the base load capacity of the pile depends on the IFR measured at aoa)BNs  
the final penetration depth. The shaft load capacity should be f>Jr|#k  
related to the average value of the IFR measured during driving, a+PzI x2  
which is equal to the PLR at the pile penetration depth. In this 6B ?twh)  
study, therefore, the equivalent pile diameters for each test were =iD 3Yt  
computed for the base and shaft load capacities using Eqs. ~4!. wg]LVW}  
The IFR and PLR at the pile penetration depth are used for correction wsVV$I[2  
of the base and the shaft load capacity, respectively. Y7[jqb1D  
Field Pile Load Capacity C=4Qlt[`  
Salgado et al. ~1998! conducted a theoretical analysis of chamber l?^4!&Nm  
size effect for cone penetration resistance in sand and quantified U!Z,xx[]  
the size effect as a function of soil state (DR and sh8) and chamber 9]wN Bd  
to pile diameter ratio. According to their results, which also apply [R7Y}k:9U  
to displacement piles, the ratio qc,cc /qc,ff of chamber to field cone ")HFYqP>9  
resistances for normally consolidated sands with DR523, 56, k,F6Tx  
Fig. 10. Unit shaft resistance versus ~a! relative density for sv8 oF GhNk  
598.1 kPa and K050.4; ~b! vertical stress for DR590% and sh8 Q&| \r  
539.2 kPa; and ~c! horizontal stress for DR590% and sv8 !1Cy$}w  
598.1 kPa q\527^ZM  
52 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING / JANUARY 2003 +|>kCtZH%  
90%, and diameter ratio in the 10–45 range can be approximated 3gj+%%!G\  
as O|N{ v"o  
qc,cc h.s+)fl\  
qc,ff VD]zz ^  
5F1.08310223SDc yD6[\'%  
dp D10.31G for DR523% (5a) 3fJc 9|  
qc,cc A:9?ZI/X  
qc,ff Y.ToIka{  
5F1.02310223SDc Z} r*K%  
dp D10.24G for DR556% (5b) :+|Z@KB  
qc,cc Y~E`9  
qc,ff fku<,SV$O4  
5F7.79310233SDc qXtC^n@x  
dp D10.27G for DR590% (5c) :e%Pvk  
In these equations, qc,cc5cone resistance measured in a calibration ;Nj7qt  
chamber; qc,ff5field cone resistance; and Dc /dp5ratio of {9aE5kR  
chamber to equivalent pile diameter. The chamber size effect factors +|89>}w4  
for the base and shaft load capacities estimated by Eq. ~5! are 0aa&m[Mk  
listed in Table 3. The field pile load capacity can then be obtained I[##2  
by dividing the chamber pile load capacity by the corresponding M8b;d}XL  
size effect factors. _v=SH$O+  
New Design Equations for Load Capacity of l.bYE/F0&  
Open-Ended Piles 58J}{Req  
Base Load Capacity #!KE\OI;@5  
Fig. 11 shows the ultimate unit field base resistance qb, f , normalized )Z?Ym.0/  
with respect to the horizontal effective stress sh8 at the pile 4l45N6"  
base, versus IFR for piles driven into sands with various relative Nf"r4%M<6  
densities. The figure shows that the normalized unit field base qF-@V25P  
resistance increases linearly with decreasing IFR. The relationship /& +tf*  
between qb, f /sh8 and IFR can be expressed as `o8/(`a  
qb, f Jrpx}2'9:a  
ash8 o;R2p $  
5326– 295• IFR~%! vf%&4\ib  
100 ><$d$(  
(6) 0h\smqm  
with a coefficient of determination r250.82. In this equation, the Hi1JLW,  
a values, a function of the relative density, were obtained from vucxt }Ti  
the calibration chamber tests as equal to 1.0 for dense sands, 0.6 A/KJqiag  
for medium sands, and 0.25 for loose sands. In the case of fully !~D}/Q;#}\  
plugged piles ~IFR50!, which behave as closed-ended piles, unit r^a7MHY1  
field base resistance is expressed as qb, f5326sh85130sv 8 for normally i,4>0o?  
consolidated dense sands with K050.4. This is consistent )MchsuF<  
with the unit base resistance of a closed-ended pile in dense sand W_8wed:b  
proposed by the Canadian foundation engineering manual ~CGS TS9|a{j3!  
1992!. In order to predict base load capacity of open-ended piles |pp*|v1t  
using Eq. ~6!, it is necessary to know either the IFR or the soil (/j/>9iro  
plug length at the final penetration depth @from which the IFR can h*$y[}hDuv  
be estimated through Eq. ~3!#. A technique for measuring IFR j; y#[|  
during pile installation will be described in a later section. Note es&vMY  
that Eq. ~6! should be used only for piles driven into sands, not ;J2zp*|  
for piles installed using vibratory hammers. f;gw"onx8F  
Table 3. Summary of Model Pile Test Results and Size Effect Factors ?Yk.$90  
Test ?ztkE62t  
indicator j=aI9p  
Test 5r8< 7g:>C  
depth W=vP]x >J  
~mm! i?g5_HI  
Soil plug "4+ WZR]  
length 3ojlB|Z  
~mm! giIWGa.a+  
IFR a$"Hvrj  
~%! PLR Xudg2t)+K  
Base load g/+C@_&m  
capacity v+`N*\J_  
~kN! \uC15s<  
Shaft load =&2 Lb  
capacity DSk/q-'u  
~kN! #( jw!d&  
Size Effect Factor cy3B({PLy  
Base L3--r  
load }O^zl#  
Shaft G) 7;;  
load ytoo~n  
HLL 256 250 78.4 0.98 2.60 0.63 0.50 0.54 3.W@ }   
420 366 71.4 0.87 2.91 0.90 0.49 0.51 bMMh|F  
592 478 67.0 0.81 3.59 1.57 0.48 0.50 6%Pdy$ P  
760 571 54.4 0.75 3.91 2.13 0.46 0.49 n3Z 5t  
HML 250 251 88.0 1.00 2.50 0.50 0.52 0.54 fb8g7H|  
420 373 76.3 0.89 2.85 0.81 0.50 0.52 WP+oFkw>  
589 483 69.0 0.82 3.67 1.39 0.48 0.50 PuT@}tw  
760 583 57.4 0.77 4.30 2.23 0.47 0.49 ws|;  `  
HHL 250 251 84.2 1.00 2.42 0.53 0.51 0.54 _m'Fr 7  
420 369 73.0 0.88 2.81 0.90 0.49 0.51 Rh{zH~oZ  
590 477 69.5 0.81 3.54 1.65 0.48 0.50 Hp|_6hO 2  
758 575 60.0 0.76 4.29 2.05 0.47 0.49 sq[iY  
HHM 252 255 87.9 1.01 3.09 0.70 0.52 0.55 qI<mjB{3`  
420 381 78.6 0.90 3.57 1.45 0.50 0.52 7cO n9fIE  
591 501 73.9 0.85 4.66 2.49 0.49 0.51 Z2='o_c  
761 614 72.1 0.81 4.91 3.60 0.49 0.50 Nkl_Ho,  
HHH 251 266 92.6 1.06 4.53 1.36 0.53 0.56 ^Z# W_R\l  
420 398 82.9 0.95 4.66 2.46 0.51 0.53 ez^@NK  
590 521 79.8 0.88 5.40 3.93 0.50 0.52 5nO% Ke=  
760 644 77.8 0.85 5.78 5.70 0.50 0.51 w1#gOwA,$  
MHL 247 236 75.9 0.96 1.82 0.28 0.53 0.58 Boz@bl mCB  
419 347 67.4 0.83 2.17 0.49 0.51 0.55 A"D,Kg S  
589 445 60.5 0.76 2.41 0.65 0.50 0.53 .0rh y2  
757 532 53.9 0.70 2.82 1.00 0.49 0.52 Upd3-2kr&J  
LHL 247 224 71.1 0.91 1.01 0.18 0.61 0.66  !@'6)/  
419 319 56.5 0.76 1.23 0.36 0.58 0.62 %r6y ;vAf  
581 401 52.4 0.69 1.46 0.59 0.57 0.60 B'EKM)dA  
756 472 42.6 0.62 1.56 0.66 0.56 0.59 rZ^v?4Z\  
JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING / JANUARY 2003 / 53 ^__Dd)(  
Shaft Load Capacity c8>hc V  
The average ultimate field unit shaft resistance f so, f for the model cwWodPNm  
piles, normalized with respect to K0sv 8 tan dc , is plotted versus R>"OXFaE  
PLR in Fig. 12 for various relative densities. It can be seen in the EC8b=B<DE  
figure that the normalized ultimate field unit shaft resistance increases )>-ibf`#?  
with decreasing PLR. The field unit shaft resistance of WjwLM2<nK7  
piles driven into dense sand can be expressed as follows: iN0nw]_*  
f so, f ugx%_x6  
~K0sv 8 tan dc!b 69NQ]{1  
57.224.8•PLR (7) yH*6@P4:0=  
in which f so, f5average ultimate unit shaft resistance in the field; WT`4s  
K05lateral earth pressure coefficient before pile driving; Ej>g.vp8I  
sv 8 5average vertical effective stress over the whole penetration pV,P|>YTf  
depth; dc5critical-state interface friction angle between the pile E7)= `kSl  
and the soil; and b5function of the relative density. The b values 16i "Yg!*  
were obtained from the calibration chamber tests as equal to 1.0 .]7Qu;L  
for dense sands, 0.4 for medium sands, and 0.22 for loose sands. hq/k*;  
In the case of closed-ended piles in normally consolidated dense hk;7:G  
sands with K050.4, the normalized unit shaft resistance equals /3:q#2'v  
7.2. This equation may be interpreted as implying that the lateral '@CR\5 @  
stress on the closed-ended pile driven in dense sands is 7.2 times Gkv{~?95  
higher than that before pile driving. This is consistent with the @wC5 g 4E  
lateral earth pressure coefficient of K52 – 3, which the Canadian *@)O7vB  
Foundation Engineering Manual ~CGS 1992! suggested for steel YH_7=0EJ  
piles with d520° driven into a normally consolidated dense sand. %ck]S!}6  
Application of New Empirical Relations y>|{YWbp?  
Field Pile Load Test mzc 4/<th  
A full-scale, field pile load test was performed on an instrumented pBP.x#|  
open-ended pile at Lagrange County in northern Indiana. The soil VZ](uFBY  
at the site is gravelly sand with maximum and minimum dry unit 0}xFD6{X  
weights of 18.64 and 15.61 kN/m3, respectively. A 2.0 m thick fill V-r3-b  
layer was removed before pile driving. The groundwater table is \Z/)Y;|mi0  
at a depth of 3 m below the soil surface. Standard penetration test _#}n~}d  
and cone penetration test results indicate that the first 3 m of the lF?tQB/a  
gravelly sand deposit are in a loose state (DR'30%), but the rest g{9+O7q  
of the deposit is in a dense to very dense state (DR'80%), as %8M)2 ?E  
shown in Fig. 13. Note that the fill originally present at the site Gkxj?)`  
was removed before the piles were installed and tested, and Fig. =)` p_W  
13 accordingly does not include data for the fill. The resulting R &4Z*?S  
overconsolidation ratio ~OCR! is also shown in Fig. 13 as a function JiU9CeD3  
of depth. lP!;3iJ B  
The test pile was an instrumented double-walled open-ended Iu *^xn  
pile, constituted of two pipes with different diameters, as shown {; >Q.OX@  
in Fig. 14. The open-ended pile had an outside diameter of 356 :C8$Xi_i}  
mm and wall thickness of 32 mm. In order to measure the base (V%`k'N7f  
and shaft load capacities directly, 20 strain gauges were attached T,OwM\`.X{  
to the outer surface of the inner pipe and 18 to the outer surface of )Cw`"n  
the outer pipe. The open-ended pile was driven to a depth of 7.04 p/ >`[I  
m using a single acting diesel hammer with a ram weight of 18.2 b (I2m  
kN and a maximum hammer stroke of 3.12 m. The soil plug tpTAeQ*:d  
length during pile driving was measured continuously using two F5qFYL;  
different weights, which were connected to each other by a steel ~E^,=4  
wire ~Fig. 15!. The heavier weight rested on top of the soil plug, RTu4@7XP  
and the lighter weight hanged outside the pile. A scale marked on NAzX". g  
the outside of the pile allowed measurement of the plug length. At awUx=%ERtA  
the final penetration depth, the IFR for the pile was 77.5%, indicating AVU>+[.=%c  
a partially plugged condition, and the PLR was 0.82. e<#DdpX!H~  
The load applied to the pile during the static load test was 5+jf/}t A  
measured using a 2 MN load cell, and the settlement of the pile /Y2/!mU</  
head was measured with two dial gauges. The residual loads after 3TZ*RPmFRm  
pile driving and the loads induced at the base and shaft of the test rUjdq/I:Z  
pile during the load test were independently measured by rezeroing v^7LctcVm  
the values of all strain gauges attached to the test pile both $eBX  
before pile driving and at the start of the static load test. The load `g1iCF  
was applied to the pile head in increments of 147 kN, which were nPgeLG"00  
decreased to 49–98 kN as the pile approached the limit load. The \rV B5|D?  
load after each increment was maintained until the pile settlement xlR2|4|8  
stabilized at less than 0.5 mm/h. The settlements at the pile head lw(e3j  
were measured at 5, 15, 35, 55, 75, 95, and 120 min for each load UP{j5gR:_  
step. When the settlement did not stabilize within 120 min, the O!Z|r ?  
settlement was measured only after stabilization ensued. Likewise, ;|cTHGxbE  
strain values for the strain gauges attached to the inner and `j9$T:`  
outer pipes were measured after the settlement of the pile head }Y17*zp%  
stabilized. R, 8s_jN  
Static Load Test Results .\qj;20W  
Fig. 16 shows the load–settlement curves for the base and shaft ;!T{%-tP  
load capacities of the full-scale open-ended pile. As shown in the [!VOw@uz  
figure, the shaft load capacity reached its limit value before the Q\3 Z|%  
Fig. 11. Normalized field unit base resistance versus incremental 7.+#zyF  
filling ratio =)OC|?9 C\  
Fig. 12. Normalized field unit shaft resistance versus incremental Fequm+  
filling ratio ;*[9Q'lI*  
54 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING / JANUARY 2003 OW(&s,|6x  
final load step. The ultimate total and base load capacities were 3?s ?XAh  
also determined as the loads at a settlement of 35.6 mm, corresponding +"g~"<  
to 10% of the pile diameter. The ultimate base and shaft D=)f )-u'  
load capacities not accounting for residual loads were 715 and b( ^^m:(w  
310 kN, respectively. The ultimate base and shaft load capacities +tN &a  
accounting for residual loads were 886 and 139 kN, respectively. -6Mm#sX  
In practice, it is difficult to account for residual loads. Residual @oG)LT  
loads are induced in every driven pile, but their magnitude depends -NBiW6b~  
on several factors. The use of the unit base and shaft resistance Us~ X9n_F  
values that have been corrected for residual loads for designing bxXiQa  
a different pile installed in a different sand site would Y#01o&f0n  
require estimation of the residual loads for that pile. This is very Yp4c'Zk  
difficult to do in practice. Accordingly, we base our suggested })IO#,  
design values of shaft and base resistances on the values measured 7e&\{*  
without any correction for residual loads, as is customary. p&K\]l}  
Comparison of Computed and Measured Capacities y/@iT8$rp  
The bearing capacity of the test pile was predicted using the empirical 8"vwU@cfC  
relationships suggested in this study. Since the soil deposit 6b Z[Kt  
was overconsolidated by removal of the fill layer, the lateral earth t^tCA -  
pressure coefficient K0 was taken as ~Mayne and Kulhawy 1982! IGAzE(  
K05~12sin f!OCRsin f (8) cUDgM  
Saturated unit weights of the sand are gsat520.1 kN/m3 for the i`O rMzL  
loose sand and 21.2 kN/m3 for the dense sand, respectively. The [ev-^[  
Fig. 13. Cone penetration test and standard penetration test results and overconsolidation ratio profile at test site ! ]Mc4!E  
Fig. 14. Schematic of full-scale test pile Fig. 15. Measurement of soil plug length during pile driving swpnuuC-  
JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING / JANUARY 2003 / 55 YJ2ro-X  
mean particle size is 0.4 mm. The critical state friction angle for } IlP:  
the sand obtained from triaxial compression tests is fc533.3°; aN^IP  
the interface friction angle between the pile and sand is taken as r[Zq3  
dc52fc/3522.2°, which is adequate for typical pipe piles. At <2P7utdZ  
the depth of the pile base, OCR51.41, and K0 results equal to / axTh  
0.55. Using Eq. ~6!, the ultimate base load capacity Qbase can be i!MwBYk  
obtained as P?3{z="LzJ  
qb, f /4joC9\AB  
ash8 hPufzhT  
5326– 295• IFR~%! o+g4p:Mf  
100 5326– 295• 77.5 DPJh5d  
100597.4 !g 0cC.'  
Qbase5qb, fAb597.4•ash 8 Sp•d0 2 ]RFdLV?  
4 D U 0ZB^`  
597.4~1.0!~0.553101.2!~0.0995!5539.4 kN }BN\/;<A  
The ultimate shaft load capacity can be computed using Eq. ~7!. ->yeJTsE9  
The b values used in the calculations are 0.3 for the first 3 m in B[xR-6phW  
loose sand and 1.0 for depth greater than 3 m in dense sands. The zd`=Ih2Wx  
variation of K0 with OCR along the whole depth of the pile was "j Zm0U$,*  
considered in the calculations, which are summarized next SQKt}kDbM  
f so, f hswTn`f  
~K0sv 8 tan dc!b Rk<%r k  
57.224.8•PLR57.224.8~0.82!53.26 T#iU+)-\%  
Qshaft5f so, f•Aso53.26K0sv 8 tan dcb~pd0D! Ob(leL>ow  
53.26S~biKoisv8iDi!pd0 tan dc %N~;{!![p  
53.26~0.3363.411.03191.3!p~0.356!tan 22.2° =&0U`P$`  
5312.9 kN "r-l8r,  
in which D5penetration depth of the pile. Thus, the ultimate total o?!uX|Fy  
load capacity can be calculated as :z~!p~  
Qtotal5Qbase1Qshaft5539.41312.95852.3 kN {of]/ 3=  
The base and shaft load capacities predicted using Eqs. ~6! and ]M4NpU M  
~7! were 75.4 and 100.9% of the ultimate values measured in the /Antb6E  
pile load test, respectively. The predicted Qtotal5852.3 kN is a b]`^KTYK  
reasonably close, conservative estimate of the measured value, as H%Y%fQ ~^  
shown in Fig. 17. z`'P>.x   
Summary and Conclusions <-|SIF  
The bearing capacity of open-ended piles is affected by the degree POBpJg  
of soil plugging, which can be quantified through the IFR. Most piu0^vEEH  
design criteria for open-ended piles do not consider the variation 4Vx+[8W  
of pile load capacity with IFR, and a standard technique for measuring /w~C~6z @!  
IFR during pile installation has not yet been proposed. In 9N}W(>  
this study, model pile tests were conducted using a calibration z]>9nv`b  
chamber to investigate the effect of IFR on the pile load capacity, !3KPwI,  
and new empirical relations between the two components of pile <R~KM=rL  
load capacity ~base and shaft load capacities! and IFR were proposed p}8ratmN  
based on the results of model pile tests. a paIJ+^[  
The results of model pile tests show that the IFR decreases B,0+HoP  
with decreasing relative density and horizontal stress, but is independent ;xW{Ehq-h  
of the vertical stress. It is also seen that the IFR increases fm6]CU1^  
linearly with the PLR, which is defined as the ratio of the soil N<b D  
plug length to pile penetration depth, and can be estimated from GI4oQcJ  
the PLR. The unit base resistance shows a tendency to increase Y~GUR&ww0n  
with decreasing IFR, and it does so at a rate that increases with s=\7)n=,M  
relative density. The unit shaft resistance, normalized with respect u<q)SQ1  
to horizontal stress, increases with decreasing IFR and with increasing {Pvr??"r  
relative density. Ty}R^cy{d  
A full-scale pile load test was also conducted on a fully instrumented vz,LF=s2  
open-ended pile driven into gravelly sand. The IFR for Fc{((x s  
the pile was continuously measured during pile driving. In order ={xqNRVd  
to check the accuracy of predictions made with the proposed ./)j5M  
equations, the equations were applied to the pile load test. Based w#d} TY  
on the comparisons with the pile load test results, the proposed .9I_N G  
equations appear to produce satisfactory predictions. 2HVCXegq  
Acknowledgments w}b<D#0XC  
The research presented in this paper was performed in a period of 9rWLE6 `  
1 year spent by the first writer as a postdoctoral fellow at Purdue Fi k@hu  
University. The first writer is grateful for support received from iDR6?fP  
the Korea Science and Engineering Foundation. The field pile rUvwpP"k  
load test done as part of this research was supported by INDOT &}|0CR.(  
and FHWA through the Joint Transportation Research Program. 4Qhx[Hv>(  
The assistance of Dr. Junhwan Lee and Bumjoo Kim with some UR\ZN@O  
aspects of this research is appreciated. ,@,LD  u  
References x/[8Wi,yB  
American Petroleum Institute ~API!. ~1991!. Recommended practice for ec`>KuY  
planning, designing and constructing fixed offshore platforms, 19th =*[, *A  
Fig. 16. Load settlement curves from field pile load test 0c-QIr}m  
Fig. 17. Comparison of predicted with measured load capacities r"1A`89  
56 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING / JANUARY 2003 Q+/R JM?3@  
Ed., America Petroleum Institute, Dallas, Dallas, API RP2A. L<"k 7)k  
Baldi, G., Bellotti, R., Ghionna, V., Jamiolkowski, M., and Pasqualini, E. 7~lB}$L  
~1981!. ‘‘Cone resistance in dry N.C. and O.C. sands.’’ Proc., Cone 4&H+hN{3  
Penetration Testing and Experience, Geotechnical Engineering Division, yvS^2+jW  
ASCE, NewYork, 145–177. #VQ36pCd  
Brucy, F., Meunier, J., and Nauroy, J. F. ~1991!. ‘‘Behavior of pile plug in ZG!x$ yi$  
sandy soil during and after driving.’’ Proc., 23rd Annual Offshore @#1cx  
Technology Conf., Houston, 145–154. TLX^~W[gOm  
Canadian Geotechnical Society ~CGS!. ~1992!. Canadian foundation engineering dY 6B%V  
manual, 3rd Ed., The Canadian Geotechnical Society, Vancouver, H.)fO ctbO  
B.C., Canada. 6O%=G3I  
Choi, Y., and O’Neill, M. W. ~1997!. ‘‘Soil plugging and relocation in 2kC^7ZAwu  
pipe pile during earthquake motion.’’ J. Geotech. Geoenviron. Eng., wiKCr/  
123~10!, 975–982. -wBnwn-  
De Nicola, A., and Randolph, M. F. ~1997!. ‘‘The plugging behavior of D@2Ya/c  
driven and jacked piles in sand.’’ Geotechnique, 47~4!, 841–856. JPHUmv6  
Houlsby, G. T., and Hitchman, R. ~1988!. ‘‘Calibration chamber tests of a E]1\iV  
cone penetration in sand.’’ Geotechnique, 38~1!, 39–44. q^u6f?B  
Jardine, R. J., Overy, R. F., and Chow, F. C. ~1998!. ‘‘Axial capacity of Ml8E50t>;  
offshore piles in dense north sea sands.’’ J. Geotech. Geoenviron. %~ ;nlDw  
Eng., 124~2!, 171–178. ?i/73H+;D3  
Klos, J., and Tejchman, A. ~1977!. ‘‘Analysis of behavior of tubular piles Xk 5oybDI  
in subsoil.’’ Proc., 9th Int. Conf. on Soil Mechanics and Foundation %!>k#F^S  
Engineering, Tokyo, 605–608. rrW! X q  
Lehane, B. M., and Gavin, G. K. ~2001!. ‘‘Base resistance of jacked pipe nz}]C04:-  
tails in sand.’’ J. Geotech. Geoenviron. Eng., ASCE, 127~6!, 473–480. (tgEa{rPAP  
Leong, E. C., and Randolph, M. F. ~1991!. ‘‘Finite element analysis of mMn2(  
soil plug response.’’ Int. J. Numer. Analyt. Meth. Geomech., 15, 121– #^"hqNwA  
141. DIL)7K4  
Mayne, P. W., and Kulhawy, F. H. ~1982!. ‘‘K0-OCR yIM.j;5:~5  
relationships in soil.’’ J. Geotech Eng. Div., Am. Soc. Civ. Eng., UU*0dSWr  
108~6!, 851–872. &f$a1#O}dx  
Murff, J. D., Raines, R. D., and Randolph, M. F. ~1990!. ‘‘Soil plug axHxqhO7zp  
behavior of piles in sand.’’ Proc., 22nd Offshore Technology Conf., BYTXAZLb  
Houston, 25–32. 3AX?B~s  
Nishida, H., Ohta, H., Matsumoto, T., and Kurihara, K. ~1985!. ‘‘Bearing k0gJ('zah  
capacity due to plugged soil on open-ended pipe pile.’’ Proc., Jpn. IJ+O),'  
Soc. Civ. Eng., 364, 219–227. o:p{^D@#k  
O’Neill, M. W., and Raines, R. D. ~1991!. ‘‘Load transfer for pipe piles in Q1]V|S;)X  
highly pressured dense sand.’’ J. Geotech. Eng., 117~8!, 1208–1226. %?U"[F1  
Paik, K. H., and Lee, S. R. ~1993!. ‘‘Behavior of soil plugs in open-ended 8/Lu'rI  
model piles driven into sands.’’ Marine Georesources Geotechnology, c-? Ygr  
11, 353–373. hnH)Jy;>  
Paik, K. H., Salgado, R., Lee, J. H., and Kim, B. J. ~2002!. ‘‘The behavior IEKMa   
of open- and closed-ended piles driven into sand.’’ J. Geotech. Geoenviron {LjK_J'  
Eng., in press.  /<(R  
Paikowsky, S. G., Whitman, R. V., and Baligh, M. M. ~1989!. ‘‘A new t sC z+MP  
look at the phenomenon of offshore pile plugging.’’ Mar. Geotech., 8, l6r%nHP@  
213–230. Ir'DA_..  
Parkin, A. K., and Lunne, T. ~1982!. ‘‘Boundary effect in the laboratory .N?|t$J  
calibration of a cone penetrometer for sand.’’ Proc., 2nd European qpH j4  
Symp. on Penetration Testing, Amsterdam, The Netherlands, 761– 7{?lEQ&UE  
768. n=lggBRx  
Randolph, M. F., Leong, E. C., and Houlsby, G. T. ~1991!. ‘‘Onedimensional .D>A'r8U  
analysis of soil plugs in pipe piles.’’ Geotechnique, 41~4!, J@=!w[v+  
587–598. \JF57t}Zk  
Randolph, M. F., Steenfelt, J. S., and Wroth, C. P. ~1979!. ‘‘The effect of {X{01j};8  
pile type on design parameters for driven piles.’’ Proc., 7th European PX+"" #  
Conf. on Soil Mechanics, British Geotechnical Society, London, 107– j@kRv@  
114. V>~*]N^f  
Salgado, R., Michell, J. K., and Jamiolkowski, M. ~1998!. ‘‘Calibration 853]CK<  
chamber size effects on penetration resistance in sand.’’ J. Geotech. WV9[DFU  
Geoenviron. Eng., 124~9!, 878–888. ~:'gvR;x  
Stefanoff, G., and Boshinov, B. ~1977!. ‘‘Bearing capacity of hollow piles @ y&h4^)z  
driven by vibration.’’ Proc., 9th Int. Conf. on Soil Mechanics and ee__3>H"/  
Foundation Engineering, Tokyo, 753–758. $D0)j(v  
Szechy, C. H. ~1959!. ‘‘Tests with tubular piles.’’ Acta Technica, 24, _rWTw+ L  
181–219. RXCygPT   
Vipulanandan, C., Wong, D., Ochoa, M., and O’Neill, M. W. ~1989!. K6 PC&+x  
‘‘Modelling displacement piles in sand using a pressure chamber.’’ IJL^dXCu  
Foundation engineering: Current principles and practices, Vol. 1, oW\Q>c7 =  
ASCE, New York, 526–541. uWM4O@Qn)d  
JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING / JANUARY 2003 / 57
离线xjywgy

发帖
6850
土币
856
威望
67214
原创币
0
只看该作者 3楼 发表于: 2010-02-01
感谢楼主!
离线changjiang08

发帖
420
土币
944
威望
1807
原创币
0
只看该作者 2楼 发表于: 2009-04-04
谢谢! 9Y*VzQE  
看能不能看懂!!
天行建,君子以自强不息;
地势坤,君子以厚德载物。
离线roc0324

发帖
3673
土币
2637
威望
11065
原创币
0
只看该作者 1楼 发表于: 2009-03-20
要是 能排版下 就好了  
快速回复
限100 字节
温馨提示:欢迎交流讨论,请勿纯表情、纯引用!
 
上一个 下一个

      浙公网安备 33010602003799号 浙ICP备14021682号-1

      工业和信息化部备案管理系统网站