第一章 随机事件和概率 j A%u 5V
第一节 基本概念 ^<2p~h0
\
`X&gE,Ii
1、排列组合初步 zQd
2
(1)排列组合公式 *z8\Lnv~k
从m个人中挑出n个人进行排列的可能数。 M .mfw#*
从m个人中挑出n个人进行组合的可能数。 YIYmiv5
例1.1:方程 的解是 @\#td5'
A. 4 B. 3 C. 2 D. 1 /PIcqg
例1.2:有5个队伍参加了甲A联赛,两两之间进行循环赛两场,试问总共的场次是多少? zK@@p+n_#.
37o;;
(2)加法原理(两种方法均能完成此事):m+n +23xev
某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。 U>N1Od4vTO
i8]S:4 9
(3)乘法原理(两个步骤分别不能完成这件事):m×n MQ8J<A Pf-
某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。 XwaXdvmK
例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法? *$g-:ILRuZ
例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少? uVrd i?3
例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜色,且相邻区域的颜色必须不同,则共有不同的涂法 /k3:']G,s
A.120种 B.140种 C.160种 D.180种 UJ
aPL+=5 8r
KbeC"mi
W'M*nR|xo
Ysv"
6b}
(4)一些常见排列 4Fr
① 特殊排列 H4+i.*T#
相邻 N(yzk_~
彼此隔开 Q\Vgl(;lX
顺序一定和不可分辨 oUlVI*~ND
例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单? A*BeR0(
①3个舞蹈节目排在一起; Cw&KVw*
②3个舞蹈节目彼此隔开; c]!V'#U
③3个舞蹈节目先后顺序一定。 F:S}w
例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法? S?2>Er
例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法? =T7.~W
}N52$L0[
② 重复排列和非重复排列(有序) zdam^o
例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法? Zj'9rXhrM1
SE*g;Cvg1
③ 对立事件 7@W>E;go
例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法? H<+TR6k<
例1.11:15人中取5人,有3个不能都取,有多少种取法? 9hyn`u.
例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性? ;RlxD 4p
nX8v+:&}
④ 顺序问题 c-sfg>0 ^
例1.13:3白球,2黑球,先后取2球,放回,2白的种数?(有序) }Zp,+U*"
例1.14:3白球,2黑球,先后取2球,不放回,2白的种数?(有序) 1?l1:}^L
例1.15:3白球,2黑球,任取2球,2白的种数?(无序) u=e{]Ax#}
`Urhy#LC
2、随机试验、随机事件及其运算 < =IFcN
(1)随机试验和随机事件 7b+6%fV
如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。试验的可能结果称为随机事件。 "\yT7?},
例如:掷一枚硬币,出现正面及出现反面;掷一颗骰子,出现“1”点、“5”点和出现偶数点都是随机事件;电话接线员在上午9时到10时接到的电话呼唤次数(泊松分布);对某一目标发射一发炮弹,弹着点到目标的距离为0.1米、0.5米及1米到3米之间都是随机事件(正态分布)。 1< ?4\?j
在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ,PDQzJY
(1) 每进行一次试验,必须发生且只能发生这一组中的一个事件; ~a2}(]
(2) 任何事件,都是由这一组中的部分事件组成的。 N?8!3&TiV
这样一组事件中的每一个事件称为基本事件,用 来表示,例如 (离散)。基本事件的全体,称为试验的样本空间,用 表示。 v`T
c}c '
一个事件就是由 中的部分点(基本事件 )组成的集合。通常用大写字母A,B,C,…表示事件,它们是 的子集。 @2i9n
如果某个 是事件A的组成部分,即这个 在事件A中出现,记为 。如果在一次试验中所出现的 有 ,则称在这次试验中事件A发生。 Wx#;E9=Im
如果 不是事件A的组成部分,就记为 。在一次试验中,所出现的 有 ,则称此次试验A没有发生。 P.DK0VgY
为必然事件,Ø为不可能事件。 Kc\fu3Q
{P-):
(2)事件的关系与运算 E"IZ6)Q
①关系: 1|:KQl2q
如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生): UPGtj"2v-
如果同时有 , ,则称事件A与事件B等价,或称A等于B:A=B。 );YDtGip J
A、B中至少有一个发生的事件:A B,或者A+B。 #w=~lq)9
属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者 ,它表示A发生而B不发生的事件。 eyxW 0}[
A、B同时发生:A B,或者AB。A B=Ø,则表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥。基本事件是互不相容的。 #O&8A
-A称为事件A的逆事件,或称A的对立事件,记为 。它表示A不发生的事件。互斥未必对立。 t_1LL >R
②运算: `WS&rmq&'
结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C "<gOzXpa
分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC) N2o7%gJw
德摩根率: , noj0F::m`j
@2#lI
例1.16:一口袋中装有五只乒乓球,其中三只是白色的,两只是红色的。现从袋中取球两次,每次一只,取出后不再放回。写出该试验的样本空间 。若 表示取到的两只球是白色的事件, 表示取到的两只球是红色的事件,试用 、 表示下列事件: 7t3!)a|lI
(1)两只球是颜色相同的事件 , cWm$;`Q#\
(2)两只球是颜色不同的事件 , F"mmLao
(3)两只球中至少有一只白球的事件 。 lEBLZ}}\
例1.17:硬币有正反两面,连续抛三次,若Ai表示第i次正面朝上,用Ai表示下列事件: NHE18_v5
(1)前两次正面朝上,第三次正面朝下的事件 , ~V6D<
(2)至少有一次正面朝上的事件 , NxILRKwO
(3)前两次正面朝上的事件 。 "r2 r
3、概率的定义和性质 fV~[;e;U.
(1)概率的公理化定义 Iu6
设 为样本空间, 为事件,对每一个事件 都有一个实数P(A),若满足下列三个条件: 4^d?D!j
1° 0≤P(A)≤1, CvdN"k
2° P(Ω) =1 7}mFL*
3° 对于两两互不相容的事件 , ,…有 \{D"
!e
bI`g|v
常称为可列(完全)可加性。 2Khv>#l
则称P(A)为事件 的概率。 QZ8IV>
+w~oH =
(2)古典概型(等可能概型) @(lh%@hO
1° , n&!-9:0
2° 。 {4PwLCy
设任一事件 ,它是由 组成的,则有 GA.8@3
P(A)= = z(~_AN M4,
W%Fv p;\`
例1.18:集合A中有100个数,B中有50个数,并且满足A中元素与B中元素关系a+b=10的有20对。问任意分别从A和B中各抽取一个,抽到满足a+b=10的a,b的概率。 +cRn%ioVi
例1.19:5双不同颜色的袜子,从中任取两只,是一对的概率为多少? !@"OB~
例1.20:在共有10个座位的小会议室内随机地坐上6名与会者,则指定的4个座位被坐满的概率是 O".=r}
A. B. C. D. @}ZVtrz
例1.21:3白球,2黑球,先后取2球,放回,2白的概率?(有序) L RF103nw
例1.22:3白球,2黑球,先后取2球,不放回,2白的概率?(有序) *NQ/UXE
例1.23:3白球,2黑球,任取2球,2白的概率?(无序) jiC>d@~y
[-x7_=E#
注意:事件的分解;放回与不放回;顺序问题。 5IG-~jzCLb
5-A\9UC*@
4、五大公式(加法、减法、乘法、全概、贝叶斯) _VXN#@y
(1)加法公式 }GIt!PG
P(A+B)=P(A)+P(B)-P(AB) Yr|4Fl~U
当P(AB)=0时,P(A+B)=P(A)+P(B) +H2Qk4XFB
例1.24:从0,1,…,9这十个数字中任意选出三个不同的数字,试求下列事件的概率: ss-D(K"
A=“三个数字中不含0或者不含5”。 }K9H^H@r!
yh=N@Z*zP
(2)减法公式 Xnh8e
P(A-B)=P(A)-P(AB) P'rb%W
当B A时,P(A-B)=P(A)-P(B) @%SQFu@FJ
当A=Ω时,P( )=1- P(B) t$ *0{w
E
例1.25:若P(A)=0.5,P(B)=0.4,P(A-B)=0.3,求P(A+B)和P( + ). F:ELPs4"
例1.26:对于任意两个互不相容的事件A与B, 以下等式中只有一个不正确,它是: .G\7cZ
(A) P(A-B)=P(A) (B) P(A-B)=P(A) +P( ∪ )-1 fXB0j;A
(C) P( -B)= P( )-P(B) (D)P[(A∪B)∩(A-B)]=P(A) Z6m)tZVM
(E)p[ ]=P(A) -P( ∪ ) %
u6Sr5A[s
b`_Q8 J
(3)条件概率和乘法公式 4GM6)"#d
定义 设A、B是两个事件,且P(A)>0,则称 为事件A发生条件下,事件B发生的条件概率,记为 。 WEpoBP
CL
条件概率是概率的一种,所有概率的性质都适合于条件概率。 bPMhfK2 %
例如P(Ω/B)=1 P( /A)=1-P(B/A) hv+zGID7
乘法公式: ;wD)hNLAvR
更一般地,对事件A1,A2,…An,若P(A1A2…An-1)>0,则有 %XTI-B/K
… …… … 。 J=yTbSN\v
wQLSf{2
例1.27:甲乙两班共有70名同学,其中女同学40名,设甲班有30名同学,而女生15名,问在碰到甲班同学时,正好碰到一名女同学的概率。 dqAw5[qMJ
例1.28:5把钥匙,只有一把能打开,如果某次打不开就扔掉,问以下事件的概率? 0CvUc>Pj`"
①第一次打开;②第二次打开;③第三次打开。 tnIX:6
D`AsRd
(4)全概公式 .e5Mnd%$M
设事件 满足 E} .^kc[(4
1° 两两互不相容, , <-0]i_4sK
2° , azU"G(6y?+
则有 rLT!To
。 ?%kV?eu'
此公式即为全概率公式。 g
`4<9RMun
B-ESFATc
I?NyM
例1.29:播种小麦时所用的种子中二等种子占2%,三等种子占1.5%,四等种子占1%,其他为一等种子。用一等、二等、三等、四等种子播种长出的穗含50颗以上麦粒的概率分别为0.5,0.15,0.1,0.05,试求种子所结的穗含有50颗以上麦粒的概率。 H[|~/0?K
例1.30:甲盒内有红球4只,黑球2只,白球2只;乙盒内有红球5只,黑球3只;丙盒内有黑球2只,白球2只。从这三只盒子的任意一只中任取出一只球,它是红球的概率是: d!{r v
A.0.5625 B.0.5 C.0.45 D.0.375 E. 0.225 zMJT:7*`|
例1.31:100个球,40个白球,60个红球,不放回先后取2次,第2次取出白球的概率?第20次取出白球的概率?