随机变量(random variable)表示随机试验各种结果的实值单值函数。随机事件不论与数量是否直接有关,都可以数量化,即都能用数量化的方式表达。 [1] ,EhVSrh)_4
随机事件数量化的好处是可以用数学分析的方法来研究随机现象。例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数,灯泡的寿命等等,都是随机变量的实例。 `?o=*OS7Y
https://bbs.yantuchina.com/read.php?tid=322104&ds=1&page=1&toread=1#3463462 :%_q[}e
C?H{CP
概率模型(Statistical Model,也称为Probabilistic Model)是用来描述不同随机变量之间关系的数学模型,通常情况下刻画了一个或多个随机变量之间的相互非确定性的概率关系。从数学上讲,该模型通常被表达为 ,其中 Y 是观测集合用来描述可能的观测结果, P 是 Y 对应的概率分布函数集合。若使用概率模型,一般而言需假设存在一个确定的分布P 生成观测数据 Y 。因此通常使用统计推断的办法确定集合 P 中谁是数据产生的原因。 ^Gz{6@TY5
)teFS%
大多数统计检验都可以被理解为一种概率模型。例如,一个比较两组数据均值的学生t检验可以被认为是对该概率模型参数是否为0的检测。此外,检验与模型的另一个共同点则是两者都需要提出假设并且误差在模型中常被假设为正态分布。 17py).\
https://baike.baidu.com/item/%E6%A6%82%E7%8E%87%E6%A8%A1%E5%9E%8B/9672385?fr=aladdin