论坛首页    职业区    学术与写作    工程技术区    软件区    资料区    商务合作区    社区办公室
 您好! 欢迎 登录注册 最新帖子 邀请注册 活动聚焦 统计排行 社区服务 帮助
 
  • 帖子
  • 日志
  • 用户
  • 版块
  • 群组
帖子
  • 4372阅读
  • 9回复

[我谈岩土界]中国岩石高边坡工程及其研究 [复制链接]

上一主题 下一主题
离线kjj0501
 

发帖
764
土币
2349
威望
6989
原创币
0
只看楼主 倒序阅读 使用道具 楼主  发表于: 2009-12-19
1 概述

岩石高边坡稳定性问题是我国20世纪70年代以后出现的最具特色的工程地质问题之一。这一问题的出现并呈现为强烈的中国特色,完全是由我国独特的地形地质条件和作为一个发展中国家所面临的大规模工程建设所决定的。尤其是20世纪80年代以来,我国经济的高速增长,极大地刺激了资源﹑能源的开发,交通体系的完善和城镇的都市化进程,大型工程活动数量之多、规模之大、速度之快、波及面之广,举世瞩目;毫无疑问,随之在不同领域也带来了众多的高边坡工程问题(表1)。以西南地区为例,地处青藏高原的东侧,受青藏高原近百万年来持续隆升的影响,在青藏高原与云贵高原和四川盆地之间形成了总体呈南北走向的巨大的大陆地形坡降带,构成我国大陆地形从西向东急剧骤降的特点;在此过程中,发育于青藏高原的长江(金沙江)及其主要支流(雅聋江、大渡河、岷江)以及雅鲁藏布江、澜沧江、怒江、大渡河等深切成谷,从而在这个巨大的大陆地形坡降带上形成高山峡谷的地貌特征,不仅蕴藏了丰富的水能资源,同时,也构成高陡边坡的基本地貌景观。而这个地区修建或拟建的巨型﹑大型水利水电工程,边坡高度小则百余米,大则达3001000, 加之现代构造活动强烈,自然动力地质作用发育, 因此,岩石高边坡通常处于复杂的地质环境并具有复杂的地质结构,构成我国大型水电工程建设中的一个关键工程技术难题无疑, 对工程修建的可行性决策起到重要的控制作用, 并在很大程度上影响着工程建设的投资及运营效益。因此,20世纪80年代以来,人们清醒的认识到必须加强复杂岩体中高陡边坡稳定性的理论研究,必须加强重大工程边坡稳定性的应用研究可以说,这一问题的复杂程度和其所具有的挑战性在全世界范围内也是少见的。

在大规模工程建设中,岩石高边坡,一方面作为工程建(构)筑物的基本环境,工程建设会在很大程度上打破原有自然边坡的平衡状态,使边坡偏离甚至远离平衡状态,控制与管理不当会带来边坡变形与失稳,形成边坡地质灾害;另一方面,它又构成工程设施的承载体,工程的荷载效应可能会影响和改变它的承载条件和承载环境,从而反过来影响岩石边坡的稳定性。因此,岩石高边坡的稳定问题不仅涉及到工程本身的安全,同时也涉及到整体环境的安全;岩石高边坡的失稳破坏不仅会直接摧毁工程建设本身,而且也会通过环境灾难对工程和人居环境带来间接的影响和灾害。因此,对岩石高边坡稳定性的研究一直是我国20世纪工程地质学领域的热点和难点科学与工程技术问题。
                          表1  不同部门岩石工程高边坡类型及特点

 
 
建议高边坡定义
一般高边坡
高度范围
 
边坡及边坡工程特点
水电系统

 

>100m

人工:100-700m

自然:100-1000m

边坡高度大,地质结构及环境条件复杂,工程对边坡质量要求高,常需要保证永久稳定。

矿山系统

 

>100m

 

   100-500m

边坡高度大,地质结构较复杂,工程对边坡质量有一定要求, 但通常考虑极限设计.

铁道系统

 
>50
人工:50-150m

自然:100-300m

边坡高度一般较大,地质结构及环境条件复杂,对边坡质量要求高,但通常要求线路快速通过。

公路系统

>30m

人工:30-80m

自然:30-150m

边坡高度一般较小,地质结构及环境条件相对简单,对边坡质量要求较高。

城建系统

>15m

人工:15-50m

自然:15-100

边坡高度小,地质结构及环境条件相对简单,对边坡质量要求高。

 

 

 

 

天行健,君子以自强不息
地势坤,君子以厚德载物
离线kjj0501

发帖
764
土币
2349
威望
6989
原创币
0
只看该作者 1楼 发表于: 2009-12-19
2 认识与回顾
20世纪,我国岩石高边坡理论与实践主要是伴随60-70年代以来西南地区水电开发、铁路建设和金川、抚顺等大型露天矿山开采的需求而发展起来的。其中尤以水电开发所遇到的高边坡问题最为突出、最为典型,对这一时期我国岩石高边坡理论和实践发展的推动作用也最大。表2列出了20世纪我国大型水电工程勘测设计与施工中所遇到的典型高边坡实例。表3 则简单回顾总结了20世纪60年代以来我国岩石高边坡工程理论与实践发展的总体历程。
表2 中国水电站建设高边坡
工程名称    边坡位置    坡高(米)    岩  性    存在的主问题
龙羊峡    泄水消能区    >200    变质砂岩及花岗岩    贯穿拉裂缝和缓倾角裂隙、虎丘山稳定、虎山坡雾化等
天生桥二级    厂房后高边坡    180-300    砂页岩夹泥岩    层状和裂隙岩体高边坡
天生桥一级    溢洪道    120    灰岩    顺向、逆向构造坡
向家坝    左岸马步坎    600    砂、泥岩互层    坡顶和深部拉裂带
溪洛渡    左、右岸    300    玄武岩    层间、层内错动带
锦屏    左岸    350-600    大理岩、砂板岩    深部拉裂
漫湾    左岸坝肩    180    微风化流纹岩    滑面加固后继续下挖
大柳树    左、右岸    200    砂板岩    松动岩体、深部拉裂
隔河岩    厂房    190    页岩    上层页岩硬,下层软
苗家坝    左、右岸    220        楔体变形、深部拉裂
五强溪    大坝左岸    170    砂岩、石英岩    层状结构,蠕变及顺岩层滑移
李家峡    左,右岸坝肩厂房及泄水建筑    220    片岩、变质岩混合    层间挤压断层、NE的裂隙发育
小浪底    引水系统进出口    120    砂岩泥岩互层    岩体软弱、断裂发育
三峡    左岸船闸    170    闪云斜长花岗岩    边坡高陡,断层和节理裂隙发育
小湾    左、右岸    700    片麻岩,少量片岩    强卸荷,倾倒,楔形体,蠕滑
龙滩    左岸进水口    260    页岩,砂岩,板岩    蠕变体中的开挖边坡
拉西瓦    坝区左岸    700    花岗岩    深部拉裂和缓倾角裂隙

60~70年代,伴随我国西南地区水能资源开发序幕的揭开,在一些水电工程的前期勘探过程中,开始遇到岩石高边坡的问题,如四川的龚嘴、二滩、贵州乌江渡、。。。。。除了与一般边坡类似的特征和问题外,最为引起工程地质学家注意的是这些边坡所表现出的复杂变形破坏现象,它们都难以用通常静力学观点去认识,尤其是如何解释滑动面的形成过程,这些现象从某种程度上蕴涵了边坡的变形破坏机理及其演化过程,而阐明这一过程是认识复杂高边坡稳定性现状并预测其未来变化的重要基础与前提。这个时期,岩石力学的发展为这个问题的解决提供了理论的源泉,它帮助工程地质学家认识到了边坡岩体的“可变形性”、 变形的“时效性”和岩体结构对这种变形乃至最终破坏可能起到的控制作用,从而开始了对地质灾害的形成演变进行“地质过程机制分析”的时代[1][2]。70年代中后期的金川露天矿、抚顺西露天采的开采引发的高边坡变形与失稳问题更加引起了人们对这一问题的关注[3][4][5]。这一阶段主要的研究的是在大量实际工程研究的基础上,对边坡变形破坏机理进行系统深入的机理分析和模式总结。最为突出的理论贡献是地应力对边坡变形破坏的引入和变形破坏基本地质力学模式的提出。但受这一时期理论和研究手段的限制,人们还无从对这一复杂过程进行力学量化的描述,更多的还是建立在“概念模型”基础上的定性分析。
80年代,工程地质学的发展进入了定性向定量发展的新阶段,工程地质学及边坡科学研
表3  岩石高边坡工程实践与研究发展历程
时期    工程实践    主导学术
思想    理论基础
及基本观点    分析
技术    典型高边坡工程
及灾害滑坡事件
1965





1980





1990





1995




2000       西南﹑西北地区水电工程建设﹑三线铁路建设,露天矿的开发揭示了一系列具有典型时效过程的大型滑坡。    地质过程机制
分析方法,

工程地质力学    工程地质学+
弹塑性力学+
流变学概念
(可变形性﹑结构控制非连续﹑流变介质)    

解析分析方法为主    
瓦依昂滑坡(1963)
龚嘴电站边坡
大渡河李子坪滑坡
雅砻江霸王山滑坡
雅砻江金龙山滑坡
乌江黄崖边坡变形
金川露天矿边坡
       三峡工程库区库岸稳定性评价﹑黄河上游一系列大型水电工程(龙羊峡﹑拉西瓦﹑李家峡等)坝区库区高边坡稳定性评价    
地质过程机制分析—定量评价
    
工程地质学+
岩石力学+
现代数理统计和数值模拟理论
(确定性的分析方法为主)    

数值+物理模拟    盐池河岩崩(1980.6.3)
鸡趴子滑坡(1982.7.17)
撒勒山滑坡(1983.3.7)
新滩滑坡(1985.6.12)
中阳村滑坡(1988.1.10)
溪口滑坡(1989.7.10)
漫湾坝肩滑坡(1989.1.8)
龙羊峡近坝库岸高边坡
拉西瓦坝区高边坡
李家峡库坝区高边坡

      金沙江向家坝﹑溪洛渡,雅砻江锦屏﹑官地,澜沧江小湾,白龙江苗家坝等大型水电工程高边坡.    系统工程地质学

工程地质系统集成法    现代工程地质学+系统科学
(强调系统性﹑强调过程的模拟再现)    

过程模拟    
天生桥二级水电站高边坡
链子崖危岩体治理
黄蜡石滑坡治理
黄土坡滑坡(1995.6.10)
鸡冠岭滑坡(1994.4.30)
甘肃黄茨滑坡(1995.3)
     三峡工程船闸高边坡,链子崖危岩体治理,小湾、锦屏高边坡。    系统工程地质或工程地质系统集成法,基于变形理论的设计    系统工程地质学(含非线性科学)变形过程控制理论(强调系统的非线性过程演化及过程控制)    过程模拟与过程控制     三峡船闸高边坡
链子崖危岩体治理,
李家峡水电站高边坡
小湾高边坡
锦屏水电站高边坡

究进入了蓬勃发展的新时期。一方面,随着计算机技术的迅速发展和现代力学、现代数值分析理论的进步,模拟技术开始广泛地应用于地质灾害分析,尤其是机制分析;针对介质的特点,先后出现了线弹性模拟、弹塑性模拟和考虑时间效应的粘-弹-塑性模拟[6],后期还出现了准大变形和运动过程的离散单元模拟,乃至全过程模拟等。基于相似理论的物理模拟技术也得到了相应的发展。借助于方法的更新和手段的进步,人们对地质灾害的认识不再仅仅停留于“概念模型”阶段,而是通过模拟,把“概念模型”上升为“理论模型”,进一步从内部作用过程(机制)上揭示边坡地质灾害的发育及滑动面的形成过程,以及这一过程所反映的边坡稳定性状况和蕴涵的今后的变化信息,从而为复杂边坡的稳定性评价及预测提供了重要的理论方法和工具。这一阶段的发展促使“地质过程机制分析”的学术思想体系上升到了 “地质过程机制分析-定量评价”的新阶段[7]。
天行健,君子以自强不息
地势坤,君子以厚德载物
离线kjj0501

发帖
764
土币
2349
威望
6989
原创币
0
只看该作者 2楼 发表于: 2009-12-19
另一方面,学科之间的相互渗透使许多与现代科学有关的一系列理论方法,如系统论方法、信息论方法、模糊数学、灰色理论、数量化理论及现代概率统计等被引入边坡科学研究,从而大大促进了理论的更新和应用研究及决策水平的提高。但所有这些方法,在描述方法上仍未脱离传统的线性领域范畴。
90年代,尤其是三峡工程建设和西部开发的实施,工程建设的需求极大地推动了我国20世纪岩石高边坡工程理论与实践的发展。这一阶段有以下三个方面标志性的成就。一是从80年代末期开始,系统科学的思想被引入复杂地质过程和高边坡稳定性研究,人们从系统与系统之间、系统内部各子系统之间的信息传递上认识到了复杂高边坡地质体的稳定性及其控制机制和可能的控制途径,从而开始了从认识地质体向适应乃至改造地质体、从认识边坡变形破坏行为向控制灾害发生的过渡,诞生了“系统工程地质学”和“工程地质系统集成”和“互馈作用”等学术思想[8][9][10]。另一标志是90年代初,非线性科学被引入到了边坡灾害的研究。人们不仅通过一般系统科学认识到了复杂灾害系统的物理构成,而且借助于非线性科学,认识到了系统形成与演变的非线形特性,从而跨越了从线性系统到非线形系统的历史性转变。它认为地质灾害是由一系列非平衡不稳定事件产生空间、时间、功能和结构上的自组织行为,从而导致开放系统远离平衡态的结果,籍此相继建立了一些初步描述边坡行为的动力学方程,提出了一些基于突变理论、分形理论及非线性动力学理论的预测模型[11~12]。
与此同时,伴随长江三峡工程船闸高边坡、链子崖岩体高边坡等相继进入治理施工阶段,从而在很大程度上推动了我国岩石高边坡的稳定性控制和监测技术的方法和技术进步,其标志性成果是大吨位岩石锚固工程的开展[13,14],我国先后在天生桥水电站二级厂房后高边坡、黄河小浪底进水口高边坡、长江三峡船闸高边坡、链子崖危岩体高边坡等应用大吨位岩石锚固对边坡实施了成功的加固处理。
天行健,君子以自强不息
地势坤,君子以厚德载物
离线kjj0501

发帖
764
土币
2349
威望
6989
原创币
0
只看该作者 3楼 发表于: 2009-12-19
3 岩石高边坡变破坏机理研究
   岩石高边坡变形破坏机理,是岩石高边坡稳定性评价的重要理论基础,同时,也是高边坡变形与稳定性控制的重要依据。因此,变形破坏机理研究在岩石高边坡工程中一开始就受到高度重视。20世纪60~70年代以来,通过西南地区水电建设的前期勘测工作和诸如金川露天矿等大型露天矿工程实践,这一方面最为重要的理论贡献就是岩石边坡变形破坏基本地质力学模型的建立和以此为依据的边坡机制分类体系的建立[1][2][3][9][15]。除了以上文献所描述的这方面的成果外,还有以下一些特殊的岩石高边坡变形破坏机理被揭露。
(1)    滑移-拉裂-剪断三段式机理
所谓边坡变形-破坏的滑移-拉裂-剪断三段式模式是指边坡的变形破坏具有分三段发育
的特征,即下部沿近水平或缓倾坡外(内)结构面蠕滑、后缘拉裂、中部锁段剪断。这种模式最早揭露于黄河龙峡水电站近坝库岸河段,以其中的查纳、龙西等大型滑坡为代表[16],后来,在黄河拉西瓦水电站、湖北盐池河磷矿等地又有发现[9,17],是一种受坡脚近水平结构面控制边坡的经典变形-破坏模式,也是我国大型高速滑坡发生的一类主要机理模式。
    可能产生这类变形破坏模式的边坡往往具有以下的地质结构:(1)坡体主体由相对均质的脆性岩体或半成岩体构成,但坡脚发育近水平或缓倾坡外的结构面;(2)以坚硬岩体为主体,但夹有相对较薄的软弱夹层构成的互层状边坡。
这类边坡的变形破坏机制主要表现在以下的阶段性过程:(1)边坡形成过程中,由于坡体整体的卸荷回弹变形,从而驱动边坡沿坡脚的缓倾结构面发生回弹错动性质的表生改造,并在坡顶形成拉张应力区,出现后缘拉裂(图1,处于高地应力区的这类边坡更具发生此种变形的条件)。(2)表生改造完成后,坡体在自重应力的长期持续作用和驱动下,沿缓倾角结构面发生持续的蠕滑变形,并导致坡体后缘拉裂的向下扩展,从而形成前缘的蠕滑段和后缘的拉裂段。显然,随着蠕滑段和拉裂段的发展,它们之间的完整岩体就构成了边坡变形的“锁固段”,坡体的稳定性将主要由锁固段来维系,锁固段的应力也将随着蠕滑段和拉裂段的发展而逐渐的积累。(3)当后缘拉裂加深到某一深度时,“锁固段”的应力积累将使这部分岩体进入累进性破坏阶段,并最终剪断锁固段岩体,发生突发的脆性破坏。由于这种突发的脆性破坏伴有很大的峰、残强度差,因此,边坡岩体的位能将得以突发的释放,从而形成高速滑坡。
文献[[16]提出根据后缘拉裂的发育深度对该类边坡的失稳破坏进行预报,并在现场调查统计资料基础上建立了边坡失稳的临界拉裂深度判据:
       Hcr=0.5763H – 27.0992
天行健,君子以自强不息
地势坤,君子以厚德载物
离线kjj0501

发帖
764
土币
2349
威望
6989
原创币
0
只看该作者 4楼 发表于: 2009-12-19
(2) 阶梯状蠕滑-拉裂机理
阶梯状蠕滑-拉裂通常见于受平行边坡陡、缓两组结构面控制的高边坡中,是一种与平面滑动相近的变形破坏模式。在这种情形下,缓裂通常构成蠕滑段,陡裂构成拉裂段,蠕滑面整体呈陡-缓相接的阶梯形或台阶状。工程实践表明,这种变形破坏模式通常出现在坚硬块状岩体或厚层岩体构成的边坡中,其变形的发生往往具有从上至下的特点(也可见到从下至上的),沿倾向坡外的中-缓倾角结构面蠕滑,并通过陡裂逐级向下传递变形,形成阶梯状蠕滑-拉裂形式,当阶梯状蠕滑面的平均倾角与结构面的残余摩擦角接近时,特别有利于这种变形的发生。
这种变形破坏模式在澜沧江小湾水电站、岷江紫坪铺水电站和黄河拉西瓦水电站等高边坡中均可见到[9,15],其中以澜沧江小湾水电站左岸Ⅳ#山梁高边坡最为典型。该高边坡蠕滑-拉裂变形体沿山梁呈近EW向展布,其前缘高程1010m,后缘高程约1280m,相对高差约270m,总体积约9.2×105 m3(图2)。

图2 小湾水电站阶梯状蠕滑-拉裂变形模式
勘探所揭示的典型变形破裂现象如图2所示:边坡蠕滑面是多级台阶式的,根据各平硐揭露的情况,确定边坡蠕滑面为一由多条中-缓倾角结构面通过陡倾角结构面连通的折线状面(平均倾角约为35°),其中,缓倾角结构面为蠕滑段,陡倾角结构面为拉张段。总体上,蠕滑面的下段较为平直,局部出现波折,但拉裂坎高度较小。蠕滑面的上段由三段缓倾角蠕滑面和两段拉裂坎构成,第一道拉裂坎即PD66号平硐上游支硐所揭露的拉裂带,其高度较小,约为5.0m;第二道拉裂坎位于4,5槽线之间,由PD82号平硐所揭露,该拉裂坎高度较大,约20.0m。变形体的后缘边界是PD82号平硐的张裂缝,该裂缝与地表的张裂带(约10m宽)对应。
边坡变形破坏机理可概括为:沿缓倾角结构面的剪切蠕滑变形通过陡倾段的拉张变形逐级向下传递,从而形成一具有阶梯状蠕滑面形态的高边坡蠕滑-拉裂变形体。?

(3)倾倒变形
倾倒变形(toppling)通常是指走向与坡面近于平行的陡倾层状岩体发生的向坡外的弯曲变形(也称弯曲-拉裂、弯曲-倾倒等)[1,3,4,5],文献[9,17]等曾给出了这种变形机理的演化模式和发生条件。而这里的压缩-倾倒则主要指的是:具有下伏软弱基座的高陡边坡,下部软层在上覆岩体的长期压缩作用下,产生非均匀的压缩变形(坡面最大,向坡内逐渐减小),从而致使坡体遭受倾覆力矩的作用,导致坡体整体向外倾倒,并在坡体后缘形成具有很大贯穿深度的后缘拉裂或沿坡体内倾向坡外的结构面发生剪胀错动-拉裂。这种变形现象最早揭露于乌江渡的黄崖(张倬元等称之为塑流-拉裂,1981),后来在岷江紫坪铺、澜沧江小湾、乌江索风营、金沙江虎跳峡以及西南地区具有此类地质结构条件的边坡工程中都有发现和揭露。
进一步,这种变形模式根据边坡内部结构的不同,相应的变形表现形式不同可分为两种类型,即压缩-倾倒-拉裂型和压缩-倾倒-剪胀错动型。
(1)    压缩-倾倒-拉裂型
这种变形模式以乌江渡水电站黄崖高边坡、乌江索风营水电站右岸2号危岩体为代表(图3)。其典型的特征是边坡岩体整体性较好,压缩-倾倒变形发生后,边坡整体倾倒,从而在后缘沿平行边坡的结构面拉裂,形成统一的后缘深部拉裂缝。当软层缓倾向坡外时,后缘拉裂与软层之间可能形成“锁固段”,这时边坡变形破坏的进一步发展可能转为前述的三段式模式,其破坏的结果形成高速滑坡;当软弱基座近水平或倾向坡内时,后缘拉裂的扩展可能直达软层,形成高边坡危岩体,边坡具有整体倾倒破坏的可能。
(2)    压缩-倾倒-错动剪胀型
这种变形模式以岷江紫坪铺、澜沧江小湾、金沙江虎跳峡等水电站工程的高边坡为代表。其典型的特征是反倾坡内的层状岩体边坡发育有一组走向与坡面平行、倾向坡外的结构面,压缩-倾倒变形发生后,边坡整体倾倒的同时,带动坡体内的这组结构面产生剪胀变形,表现为向坡外的拉张和顺结构面的错动,形成一种特殊的变形结构。由于这组结构面在边坡内通常表现为有限长度或被层间的软层所夹持或限制,因此,这种变形结构在边坡内通常不形成贯通的面或显著的后缘拉裂面,而是表现为分散的“卸荷裂隙”形式,其发育深度取决于边坡的倾倒变形程度。
一般情况下,边坡的开挖会诱导这种变形的继续发展,但通常具有继承性,即沿原有的“卸荷裂隙”产生进一步的错动变形调整(图4)。在边坡开挖过程中,这种变形机理反映在边坡的表观位移或内观位移上一般都有一个随时间(开挖)的持续增长过程,变形量和速率都可能较大(地表最大变形可达10余厘米);但由于这组变形结构的非贯通性,因此,通常在开挖结束后,变形也就随之很快减缓或停止了,岷江紫坪铺、澜沧江小湾都是这种情形。除非坡体内具有较为显著的、连通率较高的倾向坡外结构面,否则,这种变围,向坡内逐渐减小;从范围上看,一般在20-30m的范围之内。
天行健,君子以自强不息
地势坤,君子以厚德载物
离线kjj0501

发帖
764
土币
2349
威望
6989
原创币
0
只看该作者 5楼 发表于: 2009-12-19
(4)高应力-强卸荷深部破裂机理
近十年来,在西南地区大型水电工程高边坡的地质勘探过程中,常常揭露边坡具有深部卸荷,并伴随深部张裂的现象,即除了边坡浅表部发育的正常卸荷带(一般0~60m)外,在坡体的深部(一般水平距岸坡120-200m深度)还发育有深部的卸荷带,表现为典型的深部张裂。这种现象最早在雅砻江锦屏水电站普斯罗沟坝址和金沙江向家坝水电站马布坎高边坡被揭露)[15,18,19],并引起重视和研究。类似的深部张裂现象后来在白龙江苗家坝水电站、澜沧江小湾水电站、糯扎渡水电站等又有揭露。
大量的勘探实践和研究资料表明,深部张裂带的发育具有多种复杂的机理,包括本文中所提到的几种模式中实际上也包含了深部张裂带的成分。但作为强裂卸荷原因而引发的这种深部卸荷及其所伴随的深部张裂现象有以下三个强烈的背景:一是高地应力(现实边坡内部的水平或近水平应力通常在15Mpa以上,河谷下切释放前应该更高),这种高地应力是驱动边坡发生强烈回弹变形的内在动力;二是边坡深部存在有利于应力释放的结构面(平行或与边坡小角度斜交的近直立或倾坡外的断层或长大裂隙), 这是深部卸荷和张裂带形成的边坡结构基础;三是河流的快速下切,这是导致边坡内在应力快速释放的外部条件[20]。
典型的高应力-强卸荷深部张裂以雅砻江锦屏水电站普斯罗沟坝址左岸反倾边坡最为典型。主要表现为除浅表部的正常卸荷裂隙外,还发育有一系列深部裂缝,这些深部裂缝的分布特征、成因机制对高边坡和坝肩岩体稳定性有重大影响. 近十年的研究表明:锦屏水电站普斯罗沟左岸高边坡所发育的一套深部裂缝体系,实际上是在坝区特定高地应力环境条件下,伴随河谷快速下切过程中,坡体应力强烈释放,而沿坡体内原有的构造结构面(小断层和长大裂隙)卸荷拉裂的产物。
4 高边坡稳定性评价
在高边坡稳定性评价方面,比较一般的边坡稳稳定性而言,首先是在认识上所取得的进步:
(1)首先,人们认识到了高边坡作为一类特殊的地质体,正确认识其变形破坏机理对稳定性评价的重要意义。岩石高边坡的稳定性不是静止的,而是一个动态演化的地质历史过程,这个过程就是伴随时效变形的发生,边坡潜在滑动面不断的孕育、发展演化,最终进入累进性破坏而贯穿的过程。查明这一过程和所发生的内部作用机理,是岩石高边坡稳定性和适宜性评价的基础[21]。
(2)岩石高边坡稳定性受复杂岩体结构的控制,基于均匀介质的传统土力学稳定性评价方法用于这类边坡的稳定性评价与控制分析是不妥当的。因此,在高边坡稳定性研究过程中,要特别重视对岩体结构特征的研究,重视岩体结构对变形破坏机理模型的控制,重视岩体结构与潜在滑动面关系的分析。
(3)岩石高边坡稳定性的评价不仅是一个强度稳定性问题,也是一个变形稳定性问题,不同的发展演化发展阶段,对应了岩石高边坡所处的不同稳定性状态。在岩石高边坡的稳定性评价中要贯彻变形稳定性评价的思想。
    对于特定的边坡地质体,其总存在一个临界破坏的最大变形量,这个变形量代表了边坡最大的承担变形的能力,因此,也是高边坡的安全控制与预警标准制定的基础。随着二维和三维数值模拟技术的发展,人们可以在边坡监测数据的帮助下,通过较为准确的模拟建立边坡变形的数值模型,从而对这个最大变形量做出估计。而监测技术的发展已经可以对边坡的表面和内部变形做出全方位的监测,从而给出不同阶段边坡变形安全度。
(4)岩石高边坡稳定性的控制,关键在于控制变形。从变形破坏演化的历史分析,边坡是通过变形的发展逐渐累计内部的“损伤”,并向潜在滑动面转移,随着“损伤”在潜在滑动面的积累,潜在滑动面逐渐孕育、发展并最终形成边坡的控制性破坏面。因此,在特定阶段,边坡的变形控制住了,不具备进一步发展的条件了,潜在滑动面的演化就会在“孕育”或者“发展”阶段结束,而进入不了最终的累进性破坏阶段。
在具体分析评价方法方面,主要有以下及方面突出的成果:
(1)数值模拟技术在高边坡稳定性评价中得到了广泛深入的应用[21,22,23]。一方面数值模拟技术本身的发展为高边坡变形与强度稳定性分析提供了强有力的工具,三维数值模拟技术得到了广泛的应用。随着计算机技术的发展,以有限单元法为基础的数值模拟技术在90年代中期突破了计算机内存和算法上的限制,使得开展适用于高边坡稳定性分析的大规模科学计算 成为可能。到上个世纪末,在高挡微机上已经可以解决十万个节点以内的大型数值计算和数值模拟问题。目前,随着并行计算技术的发展,正在向数十~百万个节点的计算问题迈进。
另一方面,各种更适合于岩体计算的数值模拟方法自20世纪80年代以来得到极大的发展[24],首先是刚性离散单元法(DEM, Distinct Element Method)的提出,使得节理岩体模拟这种更接近于块体运动的过程模拟成为可能,实现了岩体数值模拟技术一次质的飞跃。紧接着, DDA(Discontinous deformation Analysis, 石根华,Goodman ,1989),NMM  (Numerical  Manifold Method, 石根华, 1995年)相继提出,它适用于不连续介质的大变形问题分析,从而实现了岩石块体的移动、转动、张开、闭合等全过程的模拟,据此可判断出岩体的破坏程度、破坏范围,从而对岩体的整体和局部的稳定性作出正确的评价。在数值模拟技术方面另一标志性成就是FLAC(Fast Lagrangion Analysis of Continue,P.A.Cundal1,1996)方法的提出。这种方法可以考虑材料的非线性和几何学上的非线性,采用混和离散化法使塑性破坏和塑性流动得到体现;并采用显式时间差分解析法,大大提高了运算速度;适用于求解非线性大变形,但节点的位移连续,本质上仍属于求解连续介质范畴的方法[25]。
对应用数值模拟技术的另一方面的促进是人们在认识岩体变形破坏本质和本构关系描述方面取得了长足的进展。自70~80年代弹塑性、断裂、流变问题提出以来,90年年代关于损伤分析、流变~损伤耦合分析、渗流~损伤耦合分析得到了岩石力学和工程地质学家的重视[26,27,28],并开始应用于诸如三峡船闸高边坡等工程的分析。总之,人们对地质体力学行为的描述与刻画正越来越接近于客观实际,尽管这方面还有很长的路要走。
(2)边坡系统非线性动力学分析。20世纪90年代,随着非线性科学的兴起,这一研究复杂系统的理论在许多领域迅速得到应用,这也促使人们思考边坡系统的非线性行为,并开始了这一新理论在工程地质学领域的应用。这一期间,许多作者在这一方面做了很好的开创性工作[11,12,29,30,31],建立了诸多从描述边坡变形、滑动面发展直到突变失稳的非线性模型。典型的成果包括岩石边坡滑动面累进性破坏过程的自组织临界过程描述,从而从理论上很好的刻画了岩石边坡滑动面的形成和破坏机理,也依此建立了基于自组织临界的滑动面扩展损伤判据和失稳前兆识别判据。依据非线性科学的协同理论、突变理论,建立了边坡失稳预报的协同预测模型和针对不同类型边坡的多种突变理论预报模型。但总的来看,虽然我们在应用非线性科学理论理解边坡的失稳过程和建立预报判据方面取得了显著的进展,但由于客观地质体的复杂性和理论模型的局限性,非线性理论的应用还是一个值得进一步探索的领域。
(3)岩石高边坡的动力响应分析。高边坡的动力响应是高地震烈度区一个必须引起重视的问题。关于这方面最早的研究见于文献[32],他们的后续成果建立了边坡块体运动的动力微分方程,讨论了动力稳定的评价原则[33,34]。文献[35]通过动力有限元发现岩石边坡的地震动力系数并不随坡高增高而单调增大,当坡高约100m时,坡顶动力放大系数达到最大值;坡高超过100m动力系数反而有所降低。1991年长江科学院采用有限单元法研究了三峡船闸高边坡的地震动力稳定性。但总的说来,20世纪国内对边坡,特别是复杂的岩石高边坡动力响应问题的分析理论和方法上仍显不足,是今后有待发展的重点领域。
(4)边坡安全可靠度分析。从20世纪90年代开始,针对边坡稳定性评价中诸多不确定性因素的问题,许多作者开展了边坡安全可靠度分析的研究[36,37],并取得了显著的进展,建立了特定条件下的影响因素的概率模型和边坡可靠度分析模型。但由于地质条件的复杂性,目前边坡可靠度分析还仅局限于针对一些条件相对简单的边坡的分析和应用。
天行健,君子以自强不息
地势坤,君子以厚德载物
离线kjj0501

发帖
764
土币
2349
威望
6989
原创币
0
只看该作者 6楼 发表于: 2009-12-19
5 边坡安全监测
国外最早的安全监测工作始于20世纪20年代的坝工建设,我国的安全监测工作始于50年代,但开始也主要研究大坝的安全。国外的岩土工程监测开展较早,我国从80年代初开始引起和研制了部分仪器,在露天矿边坡和水电开挖高边坡开展了系统的安全监测研究,在国家“六.五”“七.五”攻关计划的支持下,监测仪器、监测方法和监测设计、施工及监测成果应用等方面的技术不断得到改进,监测技术在高边坡安全研究中的应用越来越引起重视,并取得了一些明显的成效。90年代伴随二滩、三峡、小浪底等大型水利水电工程的设计和施工,边坡监测技术水平无论从仪器质量、监测设计与施工、观测与资料整理分析等多个方面都取得了长足的进步,监测技术已从研究阶段转入了生产实用阶段。目前,监测工作已成为了边坡工程施工的重要环节,几乎所有重要的边坡工程都设计有监测。监测工作对正确评估边坡的安全状态、指导施工、反馈和修改设计、改进边坡设计方法等多方面具有非常重要的意义,监测技术的引入使边坡工程的设计和施工在安全稳定和经济合理的协调统一中起到了不可或缺的桥梁作用[38,39,40,41]。
边坡监测方法大体上可分为两大类:外观法和内观法,两类监测方法各有其适用范围和优缺点。从方法选择上的技术进步表现在:①从以前的单纯依靠外观法搞边坡监测发展为内、外观结合与优势互补;②为及时发现坡体的稳定性异常迹象,在施工初期更多地采用了内观法;③坡体位移较大、稳定性异常时,以外观法作为了监控与临滑预报的主要手段。
外观法以坡体表面位移为观测对象,其中精密大地测量技术最为成熟、精度最高,是目前广泛使用的最有效的外观方法。大地测量法的技术进步表现在工作效率和观测精度的提高:①仪器与测量技术方面从早期采用经纬仪、水准仪和测距仪发展到使用电子经纬仪、全站式速测仪,目前更进一步采用了具有目标自动识别功能 (Automatic Target Recognition)的测量机器人,使依靠人眼的光学测量转变为计算机控制的自动测量,不仅减小了工作强度,也大大地降低了观测误差;②仪器的进步、计算技术的发展及平差理论的深入,不仅使坡体变形观测的误差满足了工程需要(毫米级),同时数据处理时间大大缩短;③自动化测量与快速数据处理的实现,使边坡变形的实时动态观测成为可能,为滑坡险情的预测预报提供了强有力的技术支持。另外,在外观法中新技术的发展如GPS测量技术、近景摄影测量和INSAR干涉雷达测量等,在近年也取得了明显的进步,其中GPS测量技术由于观测精度的不断提高,目前逐步进入实用阶段,有较乐观的发展前景。
内观法是将仪器埋入坡体内部,监测坡体在工程实施过程中的各种物理量的变化的方法。内观法仍以最直观的物理量―坡体变形作为主要的观测对象,但内观法可探测坡体内部的变形分布,观测精度较高(可达0.01~0.1mm),资料规律性较好,易于实现自动化,故内观法发展较快,目前成为边坡监测中的主要手段。
内观法在我国从80年代开始,其主要的技术成就表现在:①仪器从引进、解剖、消化、试制到完善,已发展为系列产品,填补了技术空白;②仪器观测精度不断提高,从80年代的科研试用已转化为生产实用;③监测方法与手段的多样性,便于监测成果的相互印证与综合分析,如变形观测常用的仪器有:多点位移计、倾斜仪、测缝计、沉降仪、收敛计等,另可对影响坡体变形的相关因子和环境因素进行观测,如水位、渗压、应力变化、降雨、地温、地声、振动等,便于分析坡体变形的原因;④研制了监控支护结构运行状态的仪器,如锚索应力计、锚杆测力计、土压力盒等,可与设计计算对比分析;⑤自动化监测系统的研制与应用。
另外,在监测成果的整编方面,从手工计算发展到了监测信息处理系统,目前监测信息都可全部由计算机管理,监测图表可由计算机生成。在监测成果分析方面,在常规比较法、图表法、回归法、特征值法和影响因素法的基础上,强调了与地质的紧密结合,并充分利用其它技术手段如数学物理模型、GMD模型、反分析方法等,对监测资料进行综合分析。在信息反馈方面,由于在资料整编上的进步和分析方法上的突破,监测信息反馈目前能基本做到及时、准确,可利用在修改设计、调整施工、降低工程造价,及避免工程失事或减小工程损失等多方面。
从80年代开始,边坡监测工作在水电工程和大型露天矿中得到了逐步的重视,90年代初进入工程实用。在水利水电系统的很多工程都非常重视边坡监测,如隔河岩、小浪底、五强溪、二滩、三峡、东风、李家峡、天生桥等,都根据工程情况对开挖边坡和滑坡开展了安全监测。一般对工程边坡主要采用内观法进行监测,布置多点位移计、倾斜仪等;对滑坡则采用内外观结合的方式布置监测。监测工程的实践不仅积累了完整的观测资料,也确实起到了明显的经济和社会效益,如二滩水电站2号尾水渠边坡,坡高150m,总体坡度达63度,边坡在下挖过程中变形明显(监测位移超过100mm,后缘裂缝宽250mm),根据监测资料的分析研究,基本上掌握了边坡变形的机理、变形范围与深度及发展变化趋势,及时并有效地采取了加固处理措施(100根3000kN锚索),避免了工程事故的发生;在这个过程中监测确实起到了动态评价边坡稳定性、指导施工、修改设计的作用。二滩库区金龙山滑坡的监测,全过程监控了坡体在蓄水过程中的稳定性动态,为蓄水过程及水库调度提供了决策依据。总之,监测工程实践不仅使监测技术本身在理论、方法等方面不断提高和完善,也使业主和施工单位切实感受了信息化设计和施工的强大生命力,共同促进了监测技术在边坡工程中的应用与发展。
天行健,君子以自强不息
地势坤,君子以厚德载物
离线kjj0501

发帖
764
土币
2349
威望
6989
原创币
0
只看该作者 7楼 发表于: 2009-12-19
6 岩石高边坡锚固技术
预应力锚固是应用于岩土体中的预应力水泥灌浆腱体,用来阻止或控制诸如墙、斜坡岩土体等结构单元的位移。1934年,阿尔及利亚Cheurfas大坝所采用的垂直锚标志着现代预应力地锚时代的到来。此后,这一技术在德国、法国、英国、美国及日本等国家得到广泛应用;1989年,澳大利亚施工了长120 m、工作荷载12000 kN的超高荷载大坝锚(long ultra high capacity dam anchors)。1964年,我国在安徽梅山水库建设中首次使用预应力锚索加固坝肩滑动岩体并取得成功[14,42]。上世纪80年代以后,随着我国大规模基础设施建设高潮的到来,预应力锚固技术在高边坡加固中得到了广泛应用,在结构设计、施工工艺、后期监测及加固机理研究等方面取得了若干重要成果。目前,预应力锚固技术已经成为我国边坡,尤其是岩石高边坡,加固的首选方案。
水电工程方面,天生桥一级水电站厂房边坡加固采用了121根1000 kN的预应力锚索(1992);天生桥二级水电站房西坡加固也采用了392根锚索,其中1200 kN的就有240根(1992);漫湾水电站左岸边坡加固处理共采用锚索2227根,其中1000 kN的1310根、1600 kN级20根、3000 kN级的876根、6000 kN级的21根[43](1995)。黄河小浪底水电站高边坡加固工程中累计施工预应力锚索近1500根,仅172 m高的进水口高边坡加固就采用了长18~40 m、预应力为400 kN、600 kN、800 Kn、1200 kN和1500 kN的5种锚索747根,加固工程于1996年完工[44,45]。黄河上游李家峡水电站边坡加固中采用了以预应力锚索为主的综合整治措施,施加的预应力量级为600 kN、1000 kN和3000 kN,采用的锚索总量达1872×105 kN•m[46](1997)。最大高度170 m的三峡船闸高边坡及隔离墩加固共施工预应力锚索4376根,其中对穿锚索1986根;锚索长度30~57 m,最大长度69.4 m;施加的张拉应力为1000 kN和3000 kN[14,47~50](2002)。此外,清江隔河及二滩等大型水利水电工程的高边坡加固也都广泛采用了预应力锚固技术[53~55]。
水运工程方面利用预应力锚索加固高边坡的典型实例当属长江链子崖危岩体整治工程[13,56,57]。长江链子崖危岩体位于湖北姊归新滩镇的长江南岸,是三峡库区稳定性最差的大型崩塌滑坡体,对长江航运和三峡大坝施工构成了严重威胁;经多方案对比,整治工程采用了预应力锚固技术。加固过程中,共施工锚索173根,其中1000 kN的73根、2000 kN的50根、3000 kN的50根,锚索平均长度35 m、最长的62 m;加固工程于1995年开始,1997年结束,经多年的变形观测,表明处置效果良好[56]。
目前,在我国的高速公路及国道主干线改造工程中,预应力锚索已成为路基高边坡加固的最常用手段[59]。大保高速公路某路基边坡开挖高度达到200 m,加固过程中施工了近200根长25~30 m的预应力锚索,施加的预应力量级为1000 kN,锚固段长度大于10 m[60]。云南元磨高速公路元江段某168 m的路基高边坡加固采用了289根4束预应力锚索,平均长度27 m,锚固段长度10 m,施加的预应力为600 kN[61]。铜川~黄陵高速公路某滑坡高50 m,方量近50 ×104 m3,加固过程中,采用了228根9束预应力锚索,施加预应力1000 kN。京珠高速公路某路基边坡的加固采用了20~58 m长的预应力锚索,锚固段长度10 m,施加预应力600kN和900 kN[62]。
预应力锚固在我国铁路路基边坡加固中也得到了广泛应用[63~66],其中比较典型的实例是南昆铁路八渡滑坡整治工程。该滑坡位于贵州省册亭县乃言乡,滑坡主滑体长约310~340 m,宽400~540 m,厚20~40 m,体积约290万m3;次级滑坡长约200 m,宽约380 m,厚10~20 m,体积约130万m3。滑坡加固过程中施工了132根、总长6400 m的6束预应力锚索,锚索平均长度50 m、最长的75 m、锚固段长度10 m,施加的预应力为800 kN[67]。
露天开采矿坑边坡加固方面也已开始采用预应力锚固技术。文献[68]在四川某露采边坡加固中施工了长35~38 m的预应力锚索297根,施加的预应力为1000 kN。文献[31]为进一步验证锚索在露采边坡加固中的可行性,以某露天矿边坡变形体为依托,进行了预应力锚固效果的试验研究;试验采用的是6束、900 kN的锚索(每束150 kN),锚索平均长度27 m、锚固段长8 m;理论计算表明,锚索加固对可显著提高边坡稳定性。
1条评分土币+1
yangqinggfen 土币 +1 - 2012-11-23
天行健,君子以自强不息
地势坤,君子以厚德载物
离线kjj0501

发帖
764
土币
2349
威望
6989
原创币
0
只看该作者 8楼 发表于: 2009-12-19
5 结语
由于我国独特而复杂的地形地质条件和社会发展需求,岩石高边坡问题在20世纪中后期成为一个非常具有中国特色的重大工程地质问题。20世纪,我们在岩石高边坡变形破坏机理、稳定性分析评价方法、监测预警和灾害防治等诸多方面均取得了举世瞩目的成就,完成了一系列具有世界影响的岩石高边坡工程,奠定了这一领域我国在国际上的水平和地位。但我们也必须清醒的认识到,随着我国大规模工程建设的持续开展,岩石高边坡问题将在我国长期存在,并以其复杂性和重要性对我国工程科学和工程地质工作者带来持续的挑战。继续加强复杂岩体中高边坡稳定性的理论研究,加强重大工程边坡稳定性的应用研究是我国工程地质界今后一项持续而又重要的任务。
岩石高边坡工程是一个实践性很强的学科领域,同时,也是一个各学科知识高度汇集与交融科学领域。理论与实际相结合才是解决复杂岩石高边坡工程问题的根本所在。从我国岩石工程高边坡的复杂性及学科的发展角度出发,应倡导地质过程机制分析; 强调地质与工程的结合、定性分析与定量评价的结合、系统思维与不确定思维的结合。只有这样,才能不断提高我国岩石工程高边坡的理论与实践水平。
天行健,君子以自强不息
地势坤,君子以厚德载物
离线yangqinggfen

发帖
8
土币
1398
威望
0
原创币
0
只看该作者 9楼 发表于: 2012-11-23
好东西,分享了
快速回复
限100 字节
温馨提示:欢迎交流讨论,请勿纯表情、纯引用!
 
上一个 下一个

      https://beian.mps.gov.cn/ 粤公网安备 44010602012919号 广州半山岩土网络科技有限公司 粤ICP备2024274469号

      工业和信息化部备案管理系统网站